X-Trees and Weighted Quartet Systems

被引:0
|
作者
Andreas W. M. Dress
Péter L Erdös
机构
[1] University of Bielefeld,Forschungsschwerpunkt Mathematisierungs
[2] Hungarian Academy of Sciences,Strukturbildungsprozesse
关键词
biological systematics; phylogeny; phylogenetic combinatorics; evolutionary trees; tree reconstruction; X-trees; quartet methods; quartet systems; weighted quartet systems;
D O I
10.1007/s00026-003-0179-x
中图分类号
学科分类号
摘要
In this note, we consider a finite set X and maps W from the set $ \mathcal{S}_{2|2} (X) $ of all 2, 2- splits of X into $ \mathbb{R}_{\geq 0} $. We show that such a map W is induced, in a canonical way, by a binary X-tree for which a positive length $ \mathcal{l} (e) $ is associated to every inner edge e if and only if (i) exactly two of the three numbers W(ab|cd),W(ac|bd), and W(ad|cb) vanish, for any four distinct elements a, b, c, d in X, (ii) $ a \neq d \quad\mathrm{and}\quad W (ab|xc) + W(ax|cd) = W(ab|cd) $ holds for all a, b, c, d, x in X with #{a, b, c, x} = #{b, c, d, x} = 4 and $ W(ab|cx),W(ax|cd) $ > 0, and (iii) $ W (ab|uv) \geq \quad \mathrm{min} (W(ab|uw), W(ab|vw)) $ holds for any five distinct elements a, b, u, v, w in X. Possible generalizations regarding arbitrary $ \mathbb{R} $-trees and applications regarding tree-reconstruction algorithms are indicated.
引用
收藏
页码:155 / 169
页数:14
相关论文
共 50 条
  • [21] A new quartet approach for reconstructing phylogenetic trees: quartet joining method
    Ma, Bin
    Xin, Lei
    Zhang, Kaizhong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (03) : 293 - 306
  • [22] WEIGHTED COLORING IN TREES
    Araujo, Julio
    Nisse, Nicolas
    Perennes, Stephane
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 2029 - 2041
  • [23] Weighted Coloring in Trees
    Araujo, Julio
    Nisse, Nicolas
    Perennes, Stephane
    31ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2014), 2014, 25 : 75 - 86
  • [24] WEIGHTED DERIVATION TREES
    LOUI, MC
    COMMUNICATIONS OF THE ACM, 1976, 19 (09) : 509 - 513
  • [25] QDist - quartet distance between evolutionary trees
    Mailund, T
    Pedersen, CNS
    BIOINFORMATICS, 2004, 20 (10) : 1636 - 1637
  • [26] Majorization of weighted trees: A new tool to study correlated stochastic systems
    Xu, SH
    Li, HJ
    MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (02) : 298 - 323
  • [27] Computing the quartet distance between evolutionary trees
    Bryant, D
    Tsang, J
    Kearney, P
    Li, M
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 285 - 286
  • [28] ON THE MAXIMUM QUARTET DISTANCE BETWEEN PHYLOGENETIC TREES
    Alon, Noga
    Naves, Humberto
    Sudakov, Benny
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 718 - 735
  • [29] Axiomatizing weighted synchronization trees and weighted bisimilarity
    Esik, Z.
    THEORETICAL COMPUTER SCIENCE, 2014, 534 : 2 - 23
  • [30] The Structure of Rooted Weighted Trees Modeling Layered Cyber-security Systems
    Agnarsson, Geir
    Greenlaw, Raymond
    Kantabutra, Sanpawat
    ACTA CYBERNETICA, 2016, 22 (04): : 735 - 769