X-Trees and Weighted Quartet Systems

被引:0
|
作者
Andreas W. M. Dress
Péter L Erdös
机构
[1] University of Bielefeld,Forschungsschwerpunkt Mathematisierungs
[2] Hungarian Academy of Sciences,Strukturbildungsprozesse
关键词
biological systematics; phylogeny; phylogenetic combinatorics; evolutionary trees; tree reconstruction; X-trees; quartet methods; quartet systems; weighted quartet systems;
D O I
10.1007/s00026-003-0179-x
中图分类号
学科分类号
摘要
In this note, we consider a finite set X and maps W from the set $ \mathcal{S}_{2|2} (X) $ of all 2, 2- splits of X into $ \mathbb{R}_{\geq 0} $. We show that such a map W is induced, in a canonical way, by a binary X-tree for which a positive length $ \mathcal{l} (e) $ is associated to every inner edge e if and only if (i) exactly two of the three numbers W(ab|cd),W(ac|bd), and W(ad|cb) vanish, for any four distinct elements a, b, c, d in X, (ii) $ a \neq d \quad\mathrm{and}\quad W (ab|xc) + W(ax|cd) = W(ab|cd) $ holds for all a, b, c, d, x in X with #{a, b, c, x} = #{b, c, d, x} = 4 and $ W(ab|cx),W(ax|cd) $ > 0, and (iii) $ W (ab|uv) \geq \quad \mathrm{min} (W(ab|uw), W(ab|vw)) $ holds for any five distinct elements a, b, u, v, w in X. Possible generalizations regarding arbitrary $ \mathbb{R} $-trees and applications regarding tree-reconstruction algorithms are indicated.
引用
收藏
页码:155 / 169
页数:14
相关论文
共 50 条
  • [1] Inverse Domination in X-Trees and Sibling Trees
    Shalini, V.
    Rajasingh, Indra
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (02): : 1082 - 1093
  • [2] Identifying X-trees with few characters
    Bordewich, Magnus
    Semple, Charles
    Steel, Mike
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [3] SIMULATION OF BINARY-TREES AND X-TREES ON PYRAMID NETWORKS
    DINGLE, A
    SUDBOROUGH, IH
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1993, 19 (02) : 119 - 124
  • [4] 神秘世界引渡者X-TREES
    米勒
    大舞台, 2001, (20) : 49 - 49
  • [5] OPTIMAL DYNAMIC EMBEDDING OF X-TREES INTO ARRAYS
    HODEL, AS
    LOUI, MC
    THEORETICAL COMPUTER SCIENCE, 1988, 59 (03) : 259 - 276
  • [6] Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees
    Rajan, R. Sundara
    Shantrinal, A. Arul
    Kumar, K. Jagadeesh
    Rajalaxmi, T. M.
    Rajasingh, Indra
    Balasubramanian, Krishnan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (03) : 699 - 718
  • [7] Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees
    R. Sundara Rajan
    A. Arul Shantrinal
    K. Jagadeesh Kumar
    T. M. Rajalaxmi
    Indra Rajasingh
    Krishnan Balasubramanian
    Journal of Mathematical Chemistry, 2021, 59 : 699 - 718
  • [8] Minimum triplet covers of binary phylogenetic X-trees
    Huber, K. T.
    Moulton, V.
    Steel, M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 75 (6-7) : 1827 - 1840
  • [9] Parity splits by triple point distances in X-trees
    Backelin, Joergen
    Linusson, Svante
    ANNALS OF COMBINATORICS, 2006, 10 (01) : 1 - 18
  • [10] Minimum triplet covers of binary phylogenetic X-trees
    K. T. Huber
    V. Moulton
    M. Steel
    Journal of Mathematical Biology, 2017, 75 : 1827 - 1840