Current Reservoirs in the Simple Exclusion Process

被引:0
|
作者
A. De Masi
E. Presutti
D. Tsagkarogiannis
M. E. Vares
机构
[1] Università di L’Aquila,Dipartimento di Matematica
[2] Università di Roma Tor Vergata,Dipartimento di Matematica
[3] Centro Brasileiro de Pesquisas Físicas,undefined
来源
关键词
Hydrodynamic limits; Fourier law; Non-linear boundary processes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the symmetric simple exclusion process in the interval [−N,N] with additional birth and death processes respectively on (N−K,N], K>0, and [−N,−N+K). The exclusion is speeded up by a factor N2, births and deaths by a factor N. Assuming propagation of chaos (a property proved in a companion paper, De Masi et al., http://arxiv.org/abs/1104.3447) we prove convergence in the limit N→∞ to the linear heat equation with Dirichlet condition on the boundaries; the boundary conditions however are not known a priori, they are obtained by solving a non-linear equation. The model simulates mass transport with current reservoirs at the boundaries and the Fourier law is proved to hold.
引用
收藏
相关论文
共 50 条
  • [21] Extreme fluctuations of current in the symmetric simple exclusion process: a non-stationary setting
    Vilenkin, A.
    Meerson, B.
    Sasorov, P. V.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [22] Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition
    Derrida, Bernard
    Gerschenfeld, Antoine
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) : 1 - 15
  • [23] Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival
    Grabsch, Aurelien
    Moriya, Hiroki
    Mallick, Kirone
    Sasamoto, Tomohiro
    Benichou, Olivier
    PHYSICAL REVIEW LETTERS, 2024, 133 (11)
  • [24] Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and Phase Transition in the Current Distribution
    Simon, Damien
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (05) : 931 - 951
  • [25] Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition
    Bernard Derrida
    Antoine Gerschenfeld
    Journal of Statistical Physics, 2009, 136 : 1 - 15
  • [26] Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and Phase Transition in the Current Distribution
    Damien Simon
    Journal of Statistical Physics, 2011, 142 : 931 - 951
  • [27] Non-self-averaging of current in a totally asymmetric simple exclusion process with quenched disorder
    Sakai, Issei
    Akimoto, Takuma
    PHYSICAL REVIEW E, 2023, 107 (05)
  • [28] Exclusion process with scaled resources: Delocalized shocks and interplay of reservoirs
    Pal, Bipasha
    Gupta, Arvind Kumar
    PHYSICAL REVIEW E, 2022, 105 (05)
  • [29] Totally Asymmetric Simple Exclusion Process on Networks
    Neri, Izaak
    Kern, Norbert
    Parmeggiani, Andrea
    PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [30] Totally asymmetric simple exclusion process with a shortcut
    Yuan, Yao-Ming
    Jiang, Rui
    Wang, Ruili
    Hu, Mao-Bin
    Wu, Qing-Song
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (41) : 12351 - 12364