Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

被引:0
|
作者
Bernard Derrida
Antoine Gerschenfeld
机构
[1] École Normale Supérieure,Laboratoire de Physique Statistique
来源
关键词
Non-equilibrium systems; Large deviations; Current fluctuations;
D O I
暂无
中图分类号
学科分类号
摘要
For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current Qt during time t through the origin when, in the initial condition, the sites are occupied with density ρa on the negative axis and with density ρb on the positive axis. All the cumulants of Qt grow like \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{t}$\end{document} . In the range where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{t}\sim \sqrt{t}$\end{document} , the decay exp [−Qt3/t] of the distribution of Qt is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities derived recently by Tracy and Widom for exclusion processes on the infinite line.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条