Hermitian Curvature and Plurisubharmonicity of Energy on Teichmüller Space

被引:0
|
作者
Domingo Toledo
机构
[1] University of Utah,Mathematics Department
来源
关键词
32G15; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a closed Riemann surface, N a Riemannian manifold of Hermitian non-positive curvature, f : M → N a continuous map, and E the function on the Teichmüller space of M that assigns to a complex structure on M the energy of the harmonic map homotopic to f. We show that E is a plurisubharmonic function on the Teichmüller space of M. If N has strictly negative Hermitian curvature, we characterize the directions in which the complex Hessian of E vanishes.
引用
收藏
页码:1015 / 1032
页数:17
相关论文
共 50 条