Parametrization of the Teichmüller Space of Bordered Surface NEC Groups

被引:0
|
作者
B.ESTRADA [1 ]
E.MARTíNEZ [1 ]
机构
[1] Departamento de Matemdticas Fundamentales,UNED,Paseo Senda del Rey 9,28040 Madrid,Spain
关键词
non-Euclidean crystallographic groups; hyperbolic polygons; Klein surfaces; automorphisms of surfaces; Teichmuller space;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
A non-Euclidean crystallographic group F(NEC group,for short)is a discrete subgroupof isometries of the hyperbolic plane■,with compact quotient space■.These groups uniformizeKlein surfaces,surfaces endowed with dianalytic structure.These surfaces can be seen as a generaliza-tion of Riemann surfaces.Fundamental polygons play an important role in the study of parametrizations of the Teichmiillerspace of NEC groups.In this work we construct a class of right-angled polygons which are fundamental regions of borderedsurface NEC groups.The free parameters used in the construction of the polygons give a parametriza-tion of the Teichmiiller space.From the parameters we obtain explicit matrices of the generators ofthe groups.Finally,we give examples to exhibit how different relations between the parameters reflectthe existence of automorphisms on the quotient surfaces.
引用
收藏
页码:1039 / 1056
页数:18
相关论文
共 50 条
  • [1] Parametrization of the Teichmüller space of bordered surface NEC groups
    B. Estrada
    E. Martínez
    [J]. Acta Mathematica Sinica, English Series, 2008, 24
  • [2] Parametrization of the Teichmuller space of bordered surface NEC groups
    Estrada, B.
    Martinez, E.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (06) : 1039 - 1056
  • [3] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    [J]. Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [4] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    [J]. Inventiones mathematicae, 2021, 224 : 791 - 916
  • [5] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    [J]. Geometriae Dedicata, 2008, 137 : 113 - 141
  • [6] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    [J]. Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [7] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    [J]. Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [8] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    [J]. Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259
  • [9] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II
    Hideki Miyachi
    [J]. Geometriae Dedicata, 2013, 162 : 283 - 304
  • [10] Comparisons of metrics on Teichmüller space
    Zongliang Sun
    Lixin Liu
    [J]. Chinese Annals of Mathematics, Series B, 2010, 31 : 71 - 84