Parametrization of the Teichmüller space of bordered surface NEC groups

被引:0
|
作者
B. Estrada
E. Martínez
机构
[1] UNED,Departamento de Matemáticas Fundamentales
关键词
non-Euclidean crystallographic groups; hyperbolic polygons; Klein surfaces automorphisms of surfaces; Teichmüller space; 20H10; 30F50; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
A non-Euclidean crystallographic group Γ (NEC group, for short) is a discrete subgroup of isometries of the hyperbolic plane [graphic not available: see fulltext], with compact quotient space [graphic not available: see fulltext]/Γ. These groups uniformize Klein surfaces, surfaces endowed with dianalytic structure. These surfaces can be seen as a generalization of Riemann surfaces.
引用
收藏
相关论文
共 50 条
  • [1] Parametrization of the Teichmüller Space of Bordered Surface NEC Groups
    B.ESTRADA
    E.MARTíNEZ
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (06) : 1039 - 1056
  • [2] Parametrization of the Teichmuller space of bordered surface NEC groups
    Estrada, B.
    Martinez, E.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (06) : 1039 - 1056
  • [3] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    [J]. Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [4] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    [J]. Inventiones mathematicae, 2021, 224 : 791 - 916
  • [5] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    [J]. Geometriae Dedicata, 2008, 137 : 113 - 141
  • [6] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    [J]. Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [7] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    [J]. Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [8] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    [J]. Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259
  • [9] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II
    Hideki Miyachi
    [J]. Geometriae Dedicata, 2013, 162 : 283 - 304
  • [10] Comparisons of metrics on Teichmüller space
    Zongliang Sun
    Lixin Liu
    [J]. Chinese Annals of Mathematics, Series B, 2010, 31 : 71 - 84