Limits of Relaxed Dirichlet Problems Involving a non Symmetric Dirichlet Form

被引:0
|
作者
Mataloni S. [1 ]
Tchou N.A. [2 ]
机构
[1] Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Via della Ricerca Scientifica
[2] Université de Rennes 1, Beaulieu
关键词
Open Subset; Dirichlet Problem; Symmetric Case; Radon Measure; Dirichlet Form;
D O I
10.1007/BF02505948
中图分类号
学科分类号
摘要
In this paper we study the convergence of solutions of a sequence of relaxed Dirichlet problems relative to non-symmetric Dirichlet forms. The techniques rely on the study of the behaviour of the solutions of the adjoint problems, as suggested by G. Dal Maso and A. Garroni in [16] in the case of linear elliptic operators of second order with bounded measurable coefficients. In particular we prove a compactness result due to Mosco [31] in the symmetric case.
引用
收藏
页码:65 / 93
页数:28
相关论文
共 50 条
  • [31] Exterior Dirichlet and Neumann problems for the Helmholtz equation as limits of transmission problems
    Rapun, M. -L.
    Sayas, F. -J.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 207 - 216
  • [32] Representation Formulas for Non-Symmetric Dirichlet Forms
    Mataloni, S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (04): : 1039 - 1064
  • [33] The Dirichlet-to-Neumann operator for divergence form problems
    ter Elst, A. F. M.
    Gordon, G.
    Waurick, M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 177 - 203
  • [34] The Dirichlet-to-Neumann operator for divergence form problems
    A. F. M. ter Elst
    G. Gordon
    M. Waurick
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 177 - 203
  • [35] The relaxed Dirichlet energy of mappings into a manifold
    Giaquinta, M
    Mucci, D
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) : 155 - 166
  • [36] Fractional derivatives non-symmetric and time-dependent Dirichlet forms and the drift form
    Jacob, N
    Schilling, RL
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (03): : 801 - 830
  • [37] NON-SYMMETRIC TRANSLATION INVARIANT DIRICHLET FORMS
    BERG, C
    FORST, G
    INVENTIONES MATHEMATICAE, 1973, 21 (03) : 199 - 212
  • [38] DIRICHLET PROBLEMS WITH ANISOTROPIC PRINCIPAL PART INVOLVING UNBOUNDED COEFFICIENTS
    Motreanu, Dumitru
    Tornatore, Elisabetta
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (11) : 1 - 13
  • [39] Optimization Problems Involving the First Dirichlet Eigenvalue and the Torsional Rigidity
    van den Berg, Michiel
    Buttazzo, Giuseppe
    Velichkov, Bozhidar
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 19 - 41
  • [40] Singularly perturbed nonlinear Dirichlet problems involving critical growth
    Jaeyoung Byeon
    Jianjun Zhang
    Wenming Zou
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 65 - 85