Limits of Relaxed Dirichlet Problems Involving a non Symmetric Dirichlet Form

被引:0
|
作者
Mataloni S. [1 ]
Tchou N.A. [2 ]
机构
[1] Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Via della Ricerca Scientifica
[2] Université de Rennes 1, Beaulieu
关键词
Open Subset; Dirichlet Problem; Symmetric Case; Radon Measure; Dirichlet Form;
D O I
10.1007/BF02505948
中图分类号
学科分类号
摘要
In this paper we study the convergence of solutions of a sequence of relaxed Dirichlet problems relative to non-symmetric Dirichlet forms. The techniques rely on the study of the behaviour of the solutions of the adjoint problems, as suggested by G. Dal Maso and A. Garroni in [16] in the case of linear elliptic operators of second order with bounded measurable coefficients. In particular we prove a compactness result due to Mosco [31] in the symmetric case.
引用
收藏
页码:65 / 93
页数:28
相关论文
共 50 条