Limits of Relaxed Dirichlet Problems Involving a non Symmetric Dirichlet Form

被引:0
|
作者
Mataloni S. [1 ]
Tchou N.A. [2 ]
机构
[1] Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Via della Ricerca Scientifica
[2] Université de Rennes 1, Beaulieu
关键词
Open Subset; Dirichlet Problem; Symmetric Case; Radon Measure; Dirichlet Form;
D O I
10.1007/BF02505948
中图分类号
学科分类号
摘要
In this paper we study the convergence of solutions of a sequence of relaxed Dirichlet problems relative to non-symmetric Dirichlet forms. The techniques rely on the study of the behaviour of the solutions of the adjoint problems, as suggested by G. Dal Maso and A. Garroni in [16] in the case of linear elliptic operators of second order with bounded measurable coefficients. In particular we prove a compactness result due to Mosco [31] in the symmetric case.
引用
收藏
页码:65 / 93
页数:28
相关论文
共 50 条
  • [1] Relaxation for Dirichlet problems involving a Dirichlet form
    Biroli, M
    Tchou, N
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (01): : 203 - 225
  • [2] RANDOM RELAXED DIRICHLET PROBLEMS
    BALZANO, M
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 153 : 133 - 174
  • [3] FRACTAL RELAXED DIRICHLET PROBLEMS
    BRAIDES, A
    NOTARANTONIO, L
    MANUSCRIPTA MATHEMATICA, 1993, 81 (1-2) : 41 - 56
  • [4] On notions of harmonicity for non-symmetric Dirichlet form
    Ma ZhiMing
    Zhu RongChan
    Zhu XiangChan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (06) : 1407 - 1420
  • [5] On notions of harmonicity for non-symmetric Dirichlet form
    MA ZhiMing1
    2School of Mathematical Sciences
    ScienceChina(Mathematics), 2010, 53 (06) : 1407 - 1420
  • [6] On notions of harmonicity for non-symmetric Dirichlet form
    ZhiMing Ma
    RongChan Zhu
    XiangChan Zhu
    Science China Mathematics, 2010, 53 : 1407 - 1420
  • [7] NUMERICAL SHAPE OPTIMIZATION FOR RELAXED DIRICHLET PROBLEMS
    VITA, SF
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1993, 3 (01): : 19 - 34
  • [8] Quasi-linear relaxed dirichlet problems
    Vita, SF
    Murat, F
    Tchou, NA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) : 977 - 996
  • [9] Stability analysis of relaxed Dirichlet boundary control problems
    Arada, N
    Raymond, JP
    CONTROL AND CYBERNETICS, 1999, 28 (01): : 35 - 51
  • [10] WIENER CRITERIA AND ENERGY DECAY FOR RELAXED DIRICHLET PROBLEMS
    DALMASO, G
    MOSCO, U
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 95 (04) : 345 - 387