Algorithmic and Hardness Results for the Colorful Components Problems

被引:0
|
作者
Anna Adamaszek
Alexandru Popa
机构
[1] Max-Planck-Institut für Informatik,Faculty of Informatics
[2] Masaryk University,undefined
来源
Algorithmica | 2015年 / 73卷
关键词
Colorful components; Graph coloring; Exact polynomial-time algorithms; Hardness of approximation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the colorful components framework, motivated by applications emerging from comparative genomics. The general goal is to remove a collection of edges from an undirected vertex-colored graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} such that in the resulting graph G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} all the connected components are colorful (i.e., any two vertices of the same color belong to different connected components). We want G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} to optimize an objective function, the selection of this function being specific to each problem in the framework. We analyze three objective functions, and thus, three different problems, which are believed to be relevant for the biological applications: minimizing the number of singleton vertices, maximizing the number of edges in the transitive closure, and minimizing the number of connected components. Our main result is a polynomial-time algorithm for the first problem. This result disproves the conjecture of Zheng et al. that the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ NP$$\end{document}-hard (assuming P≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \ne NP$$\end{document}). Then, we show that the second problem is APX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ APX$$\end{document}-hard, thus proving and strengthening the conjecture of Zheng et al. that the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ NP$$\end{document}-hard. Finally, we show that the third problem does not admit polynomial-time approximation within a factor of |V|1/14-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/14 - \epsilon }$$\end{document} for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, assuming P≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \ne NP$$\end{document} (or within a factor of |V|1/2-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/2 - \epsilon }$$\end{document}, assuming ZPP≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ZPP \ne NP$$\end{document}).
引用
收藏
页码:371 / 388
页数:17
相关论文
共 50 条
  • [41] ALGORITHMS AND ALGORITHMIC PROBLEMS
    BURGIN, MS
    PROGRAMMING AND COMPUTER SOFTWARE, 1985, 11 (04) : 191 - 201
  • [42] Improved hardness and approximation results for single allocation hub location problems
    Wang, Xing
    Chen, Guangting
    Chen, Yong
    Lin, Guohui
    Wang, Yonghao
    Zhang, An
    THEORETICAL COMPUTER SCIENCE, 2021, 864 : 10 - 19
  • [43] A note on the hardness results for the labeled perfect matching problems in bipartite graphs
    Monnot, Jerome
    RAIRO-OPERATIONS RESEARCH, 2008, 42 (03) : 315 - 324
  • [44] Algorithms and Hardness Results for Nearest Neighbor Problems in Bicolored Point Sets
    Banerjee, Sandip
    Bhore, Sujoy
    Chitnis, Rajesh
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 80 - 93
  • [45] Hardness results for dynamic problems by extensions of Fredman and Saks' chronogram method
    Husfeldt, T
    Rauhe, T
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1998, 1443 : 67 - 78
  • [46] DICHOTOMY RESULTS ON THE HARDNESS OF H-FREE EDGE MODIFICATION PROBLEMS
    Aravind, N. R.
    Sandeep, R. B.
    Sivadasan, Naveen
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 542 - 561
  • [47] Strengthening topological colorful results for graphs
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    Meunier, Frederic
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 64 : 27 - 44
  • [48] Colorful Math: Developing Algorithmic Methodology to Visualize and Analyze the Dynamics of a Deciduous Tree
    O'Brien, Shayne T.
    Song, Bo
    Williams, Brian
    Bao, Shaowu
    2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2015, : 555 - 560
  • [49] RESULTS AND PROBLEMS IN SYNTHESIS OF CRYSTAL MATERIAL FOR LUMINESCENCE COMPONENTS
    BUTTER, E
    ZEITSCHRIFT FUR CHEMIE, 1979, 19 (04): : 159 - 160
  • [50] On the complexity of some colorful problems parameterized by treewidth
    Fellows, Michael R.
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Rosamond, Frances
    Saurabh, Saket
    Szeider, Stefan
    Thomassen, Carsten
    INFORMATION AND COMPUTATION, 2011, 209 (02) : 143 - 153