Algorithmic and Hardness Results for the Colorful Components Problems

被引:0
|
作者
Anna Adamaszek
Alexandru Popa
机构
[1] Max-Planck-Institut für Informatik,Faculty of Informatics
[2] Masaryk University,undefined
来源
Algorithmica | 2015年 / 73卷
关键词
Colorful components; Graph coloring; Exact polynomial-time algorithms; Hardness of approximation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the colorful components framework, motivated by applications emerging from comparative genomics. The general goal is to remove a collection of edges from an undirected vertex-colored graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} such that in the resulting graph G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} all the connected components are colorful (i.e., any two vertices of the same color belong to different connected components). We want G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} to optimize an objective function, the selection of this function being specific to each problem in the framework. We analyze three objective functions, and thus, three different problems, which are believed to be relevant for the biological applications: minimizing the number of singleton vertices, maximizing the number of edges in the transitive closure, and minimizing the number of connected components. Our main result is a polynomial-time algorithm for the first problem. This result disproves the conjecture of Zheng et al. that the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ NP$$\end{document}-hard (assuming P≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \ne NP$$\end{document}). Then, we show that the second problem is APX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ APX$$\end{document}-hard, thus proving and strengthening the conjecture of Zheng et al. that the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ NP$$\end{document}-hard. Finally, we show that the third problem does not admit polynomial-time approximation within a factor of |V|1/14-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/14 - \epsilon }$$\end{document} for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, assuming P≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \ne NP$$\end{document} (or within a factor of |V|1/2-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/2 - \epsilon }$$\end{document}, assuming ZPP≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ZPP \ne NP$$\end{document}).
引用
收藏
页码:371 / 388
页数:17
相关论文
共 50 条
  • [31] Universal algebra and hardness results for constraint satisfaction problems
    Larose, Benoit
    Tesson, Pascal
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 267 - +
  • [32] New Unconditional Hardness Results for Dynamic and Online Problems
    Clifford, Raphael
    Gronlund, Allan
    Larsen, Kasper Green
    2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, : 1089 - 1107
  • [33] Theoretical and algorithmic results for a class of hierarchical fleet mix problems
    Cambini, Riccardo
    Riccardi, Rossana
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 198 (03) : 741 - 747
  • [34] Hardness results and spectral techniques for combinatorial problems on circulant graphs
    Codenotti, B
    Gerace, I
    Vigna, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 123 - 142
  • [35] Hardness Results and Approximation Schemes for Discrete Packing and Domination Problems
    Madireddy, Raghunath Reddy
    Mudgal, Apurva
    Pandit, Supantha
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 421 - 435
  • [36] Degree-Constrained Subgraph Problems: Hardness and Approximation Results
    Amini, Omid
    Peleg, David
    Perennes, Stephane
    Sau, Ignasi
    Saurabh, Saket
    APPROXIMATION AND ONLINE ALGORITHMS, 2009, 5426 : 29 - +
  • [37] Parameterized algorithms and hardness results for some graph motif problems
    Betzler, Nadja
    Fellows, Michael R.
    Komusiewicz, Christian
    Niedermeier, Rolf
    COMBINATORIAL PATTERN MATCHING, 2008, 5029 : 31 - +
  • [38] SOME ALGORITHMIC PROBLEMS FOR SYSTEMS OF ALGORITHMIC ALGEBRAS
    SEMENOV, AL
    DOKLADY AKADEMII NAUK SSSR, 1978, 239 (05): : 1063 - 1066
  • [39] On Colorful Vertex and Edge Cover Problems
    Bandyapadhyay, Sayan
    Banik, Aritra
    Bhore, Sujoy
    ALGORITHMICA, 2023, 85 (12) : 3816 - 3827
  • [40] On Colorful Vertex and Edge Cover Problems
    Sayan Bandyapadhyay
    Aritra Banik
    Sujoy Bhore
    Algorithmica, 2023, 85 : 3816 - 3827