Algorithmic and Hardness Results for the Colorful Components Problems

被引:0
|
作者
Anna Adamaszek
Alexandru Popa
机构
[1] Max-Planck-Institut für Informatik,Faculty of Informatics
[2] Masaryk University,undefined
来源
Algorithmica | 2015年 / 73卷
关键词
Colorful components; Graph coloring; Exact polynomial-time algorithms; Hardness of approximation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the colorful components framework, motivated by applications emerging from comparative genomics. The general goal is to remove a collection of edges from an undirected vertex-colored graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} such that in the resulting graph G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} all the connected components are colorful (i.e., any two vertices of the same color belong to different connected components). We want G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} to optimize an objective function, the selection of this function being specific to each problem in the framework. We analyze three objective functions, and thus, three different problems, which are believed to be relevant for the biological applications: minimizing the number of singleton vertices, maximizing the number of edges in the transitive closure, and minimizing the number of connected components. Our main result is a polynomial-time algorithm for the first problem. This result disproves the conjecture of Zheng et al. that the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ NP$$\end{document}-hard (assuming P≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \ne NP$$\end{document}). Then, we show that the second problem is APX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ APX$$\end{document}-hard, thus proving and strengthening the conjecture of Zheng et al. that the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ NP$$\end{document}-hard. Finally, we show that the third problem does not admit polynomial-time approximation within a factor of |V|1/14-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/14 - \epsilon }$$\end{document} for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, assuming P≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \ne NP$$\end{document} (or within a factor of |V|1/2-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/2 - \epsilon }$$\end{document}, assuming ZPP≠NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ZPP \ne NP$$\end{document}).
引用
收藏
页码:371 / 388
页数:17
相关论文
共 50 条
  • [1] Algorithmic and Hardness Results for the Colorful Components Problems
    Adamaszek, Anna
    Popa, Alexandru
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 683 - 694
  • [2] Algorithmic and Hardness Results for the Colorful Components Problems
    Adamaszek, Anna
    Popa, Alexandru
    ALGORITHMICA, 2015, 73 (02) : 371 - 388
  • [3] On the Parameterized Complexity of Colorful Components and Related Problems
    Misra, Neeldhara
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 237 - 249
  • [4] Robust Satisfiability for CSPs: Hardness and Algorithmic Results
    Dalmau, Victor
    Krokhin, Andrei
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2013, 5 (04)
  • [5] Algorithmic and Hardness Results for the Hub Labeling Problem
    Angelidakis, Haris
    Makarychev, Yury
    Oparin, Vsevolod
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1442 - 1461
  • [6] Parameterized complexity and approximation issues for the colorful components problems
    Dondi, Riccardo
    Sikora, Florian
    THEORETICAL COMPUTER SCIENCE, 2018, 739 : 1 - 12
  • [7] Parameterized Complexity and Approximation Issues for the Colorful Components Problems
    Dondi, Riccardo
    Sikora, Florian
    PURSUIT OF THE UNIVERSAL, 2016, 9709 : 261 - 270
  • [8] Algorithmic results for ordered median problems
    Kalcsics, J
    Nickel, S
    Puerto, J
    Tamir, A
    OPERATIONS RESEARCH LETTERS, 2002, 30 (03) : 149 - 158
  • [9] SOLUTION OF ALGORITHMIC PROBLEMS OF KEY COMPONENTS CHOICE FOR RECTIFYING PROJECT PROBLEMS
    KOLOKOLNIKOV, AG
    MESKHI, GA
    ZHVANETSKY, IB
    PLATONOV, VM
    KHIMICHESKAYA PROMYSHLENNOST, 1986, (08): : 501 - 503
  • [10] Hardness results for stable exchange problems
    Meszaros-Karkus, Zsuzsa
    THEORETICAL COMPUTER SCIENCE, 2017, 670 : 68 - 78