Estimation of the reliability characteristics by using classical and Bayesian methods of estimation for xgamma distribution

被引:3
|
作者
Mahendra Saha
Abhimanyu Singh Yadav
机构
[1] Central University of Rajasthan,Department of Statistics
[2] Banaras Hindu University,Department of Statistics
关键词
Classical and Bayesian inference; Bootstrap confidence interval; Bayes credible interval; 62E05; 62B10; 62F15;
D O I
10.1007/s41872-020-00162-9
中图分类号
学科分类号
摘要
In this article, estimation of the reliability characteristics viz., mean time to system failure M(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t; \alpha )$$\end{document}, reliability function R(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(t; \alpha )$$\end{document} is considered for xgamma lifetime distribution. First, four different methods of estimation of the reliability characteristics for specified value of time t are addressed from frequentist approaches and compared them in terms of their respective mean squared errors using extensive numerical simulations. Second, we compared three bootstrap confidence intervals (BCIs) including standard bootstrap, percentile bootstrap and bias-corrected percentile bootstrap. Third, Bayesian estimation is considered under three loss functions using gamma prior for the considered model. Fourth, we obtained highest posterior density (HPD) credible intervals of M(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t; \alpha )$$\end{document} and R(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(t; \alpha )$$\end{document}. Monte Carlo simulation study has been carried out to compare the performances of the classical BCIs and HPD credible intervals of M(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t; \alpha )$$\end{document} and R(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(t; \alpha )$$\end{document} in terms of average widths and coverage probabilities. Finally, a real data set has been analyzed for illustrative purpose.
引用
收藏
页码:303 / 317
页数:14
相关论文
共 50 条
  • [41] BAYESIAN SHRINKAGE ESTIMATION OF SYSTEM RELIABILITY WITH WEIBULL DISTRIBUTION OF COMPONENTS
    PANDEY, M
    UPADHYAY, SK
    MICROELECTRONICS AND RELIABILITY, 1987, 27 (04): : 625 - 628
  • [42] BAYESIAN WEIBULL RELIABILITY ESTIMATION
    DESOUZA, DI
    LAMBERSON, LR
    IIE TRANSACTIONS, 1995, 27 (03) : 311 - 320
  • [43] Bayesian estimation of reliability using time-to-failure distribution of parametric degradation models
    Siju, K. C.
    Kumar, M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (09) : 1717 - 1748
  • [44] A Direct Bayesian Estimation of Reliability
    Yasuharu Okamoto
    Behaviormetrika, 2013, 40 (2) : 149 - 168
  • [45] Bayesian Weibull reliability estimation
    De Souza, Daniel I.
    Lamberson, Leonard R.
    IIE Transactions (Institute of Industrial Engineers), 1995, 27 (03): : 311 - 320
  • [46] Odd Log-Logistic XGamma Model: Bayesian and Classical Estimation with Risk Analysis Utilizing Reinsurance Revenues Data
    Ranjbar, Vahid
    Alizadeh, Morad
    Afshari, Mahmoud
    Yousof, Haitham M.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2024, 23 (03): : 329 - 362
  • [47] Bayesian Weibull reliability estimation
    De Souza Jr., Daniel I.
    Lamberson, Leonard R.
    IIE Transactions (Institute of Industrial Engineers), 1995, 27 (03): : 311 - 320
  • [48] Bayesian estimation of some reliability characteristics for Nakagami model using adaptive progressive censoring
    Nassar, Mazen
    Alotaibi, Refah
    Elshahhat, Ahmed
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [50] Iterative estimation of reliability parameters using the Bayesian approach
    Augutis, J
    Zutautaite, I
    Alzbutas, R
    Uspuras, E
    RISK ANALYSIS IV, 2004, 9 : 497 - 502