Estimation of the reliability characteristics by using classical and Bayesian methods of estimation for xgamma distribution

被引:3
|
作者
Mahendra Saha
Abhimanyu Singh Yadav
机构
[1] Central University of Rajasthan,Department of Statistics
[2] Banaras Hindu University,Department of Statistics
关键词
Classical and Bayesian inference; Bootstrap confidence interval; Bayes credible interval; 62E05; 62B10; 62F15;
D O I
10.1007/s41872-020-00162-9
中图分类号
学科分类号
摘要
In this article, estimation of the reliability characteristics viz., mean time to system failure M(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t; \alpha )$$\end{document}, reliability function R(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(t; \alpha )$$\end{document} is considered for xgamma lifetime distribution. First, four different methods of estimation of the reliability characteristics for specified value of time t are addressed from frequentist approaches and compared them in terms of their respective mean squared errors using extensive numerical simulations. Second, we compared three bootstrap confidence intervals (BCIs) including standard bootstrap, percentile bootstrap and bias-corrected percentile bootstrap. Third, Bayesian estimation is considered under three loss functions using gamma prior for the considered model. Fourth, we obtained highest posterior density (HPD) credible intervals of M(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t; \alpha )$$\end{document} and R(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(t; \alpha )$$\end{document}. Monte Carlo simulation study has been carried out to compare the performances of the classical BCIs and HPD credible intervals of M(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t; \alpha )$$\end{document} and R(t;α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(t; \alpha )$$\end{document} in terms of average widths and coverage probabilities. Finally, a real data set has been analyzed for illustrative purpose.
引用
收藏
页码:303 / 317
页数:14
相关论文
共 50 条
  • [21] Reliability estimation by Bayesian method:: definition of prior distribution using dependability study
    Guérin, F
    Dumon, B
    Usureau, E
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2003, 82 (03) : 299 - 306
  • [22] Fuzzy reliability estimation using Bayesian approach
    Wu, HC
    COMPUTERS & INDUSTRIAL ENGINEERING, 2004, 46 (03) : 467 - 493
  • [23] Bias Reduction of Maximum Likelihood Estimation in the Inverse Xgamma Distribution
    Ahmed, Ahmed Abdulhadi
    Algamal, Zakariya Yahya
    Albalawi, Olayan
    CONTEMPORARY MATHEMATICS, 2024, 5 (03): : 3174 - 3183
  • [24] A STUDY ON COMPARISONS OF BAYESIAN AND CLASSICAL PARAMETER ESTIMATION METHODS FOR THE TWO-PARAMETER WEIBULL DISTRIBUTION
    Yilmaz, Asuman
    Kara, Mahmut
    Aydogdu, Halil
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 576 - 602
  • [25] Estimation and Bayesian Prediction for New Version of Xgamma Distribution Under Progressive Type-II Censoring
    El-Saeed, Ahmed R.
    Ruidas, Molay Kumar
    Tolba, Ahlam H.
    SYMMETRY-BASEL, 2025, 17 (03):
  • [26] Some remarks on classical and Bayesian reliability estimation of binomial and Poisson distributions
    Chaturvedi, Ajit
    Tiwari, Neeraj
    Kumar, Sanjay
    STATISTICAL PAPERS, 2007, 48 (04) : 683 - 693
  • [27] Bayesian and Classical Estimation of Strength-Stress Reliability for Gompertz Distribution Based on Upper Record Values
    Hemmati, A.
    Khodadadi, Z.
    Zare, K.
    Jafarpour, H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (07)
  • [28] ESTIMATION OF THE RELIABILITY FUNCTION OF THE INVERSE GAUSSIAN DISTRIBUTION UNDER A BAYESIAN BY USING THE CONCEPT OF A PREDICTIVE DISTRIBUTION
    Alduais, Fuad S.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2021, 71 (01) : 1 - 10
  • [29] Classical and Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution
    Ahmad, Kaisar
    Ahmad, S. P.
    Ahmed, A.
    JOURNAL OF PROBABILITY AND STATISTICS, 2016, 2016 : 1 - 8
  • [30] Some remarks on classical and bayesian reliability estimation of binomial and poisson distributions
    Ajit Chaturvedi
    Neeraj Tiwari
    Sanjay Kumar
    Statistical Papers, 2007, 48 : 683 - 693