Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1

被引:0
|
作者
Alief Moulana
Thomas Dupic
Angela M. Phillips
Jeffrey Chang
Serafina Nieves
Anne A. Roffler
Allison J. Greaney
Tyler N. Starr
Jesse D. Bloom
Michael M. Desai
机构
[1] Harvard University,Department of Organismic and Evolutionary Biology
[2] Harvard University,Department of Physics
[3] Harvard University,Department of Molecular and Cellular Biology
[4] Harvard Medical School,Biological and Biomedical Sciences
[5] Fred Hutchinson Cancer Research Center,Basic Sciences Division and Computational Biology Program
[6] University of Washington,Department of Genome Sciences
[7] University of Washington,Medical Scientist Training Program
[8] Howard Hughes Medical Institute,NSF
[9] Harvard University,Simons Center for Mathematical and Statistical Analysis of Biology
[10] Harvard University,Quantitative Biology Initiative
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the earlier SARS-CoV-2 variants, BA.1 has many mutations, some of which are known to enable antibody escape. Many of these antibody-escape mutations individually decrease the spike receptor-binding domain (RBD) affinity for ACE2, but BA.1 still binds ACE2 with high affinity. The fitness and evolution of the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15 mutations (215 = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2 affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1 arising from a chronic infection.
引用
收藏
相关论文
共 50 条
  • [31] Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2
    Evans, John P.
    Zeng, Cong
    Qu, Panke
    Faraone, Julia
    Zheng, Yi-Min
    Carlin, Claire
    Bednash, Joseph S.
    Zhou, Tongqing
    Lozanski, Gerard
    Mallampalli, Rama
    Saif, Linda J.
    Oltz, Eugene M.
    Mohler, Peter J.
    Xu, Kai
    Gumina, Richard J.
    Liu, Shan-Lu
    CELL HOST & MICROBE, 2022, 30 (08) : 1093 - +
  • [32] Convalescent Plasma Therapy in Immunocompromised Patients Infected With the BA.1 or BA.2 Omicron SARS-CoV-2
    Richier, Quentin
    De Valence, Benjamin
    Chopin, Dorothee
    Gras, Emmanuelle
    Levi, Laura I.
    Aad, Yasmine Abi
    Pacanowski, Jerome
    Meynard, Jean-Luc
    Placais, Leo
    Fey, Dorothee
    Couture, Priscille
    Martin-Blondel, Guillaume
    Pestre, Vincent
    Woessner, Juliette
    Ancellin, Sophie
    Weyrich, Pierre
    Carpentier, Benjamin
    Idri, Salim
    Tiberghien, Pierre
    Surgers, Laure
    Hueso, Thomas
    Lacombe, Karine
    INFLUENZA AND OTHER RESPIRATORY VIRUSES, 2024, 18 (03)
  • [33] Determinants of Spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2
    Pastorio, Chiara
    Zech, Fabian
    Noettger, Sabrina
    Jung, Christoph
    Jacob, Timo
    Sanderson, Theo
    Sparrer, Konstantin M. J.
    Kirchhoff, Frank
    CELL HOST & MICROBE, 2022, 30 (09) : 1255 - +
  • [34] Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark
    Lyngse, Frederik Plesner
    Kirkeby, Carsten Thure
    Denwood, Matthew
    Christiansen, Lasse Engbo
    Molbak, Kare
    Moller, Camilla Holten
    Skov, Robert Leo
    Krause, Tyra Grove
    Rasmussen, Morten
    Sieber, Raphael Niklaus
    Johannesen, Thor Bech
    Lillebaek, Troels
    Fonager, Jannik
    Fomsgaard, Anders
    Moller, Frederik Trier
    Stegger, Marc
    Overvad, Maria
    Spiess, Katja
    Mortensen, Laust Hvas
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [35] A retrospective assessment of forecasting the peak of the SARS-CoV-2 Omicron BA.1 wave in England
    Keeling, Matt J.
    Dyson, Louise
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [36] Severe encephalopathy associated with SARS-CoV-2 Omicron BA.1 variant infection in a neonate
    Tetsuhara, Kenichi
    Akamine, Satoshi
    Matsubara, Yoshie
    Fujii, Shunsuke
    Kashimada, Wataru
    Marutani, Kentaro
    Torio, Michiko
    Morooka, Yuya
    Hanaoka, Nozomu
    Fujimoto, Tsuguto
    Nakamura-Miwa, Haruna
    Arai, Satoru
    Tanaka-Taya, Keiko
    Furuno, Kenji
    Mizuno, Yumi
    Kira, Ryutaro
    BRAIN & DEVELOPMENT, 2022, 44 (10): : 743 - 747
  • [37] Reduced airborne transmission of SARS-CoV-2 BA.1 Omicron virus in Syrian hamsters
    Boon, Adrianus C. M.
    Darling, Tamarand L.
    Halfmann, Peter J.
    Franks, John
    Webby, Richard J.
    Barouch, Dan H.
    Port, Julia R.
    Munster, Vincent J.
    Diamond, Michael S.
    Kawaoka, Yoshihiro
    PLOS PATHOGENS, 2022, 18 (12)
  • [38] SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells
    Antia, Avan
    Alvarado, David M.
    Zeng, Qiru
    Casorla-Perez, Luis A.
    Davis, Deanna L.
    Sonnek, Naomi M.
    Ciorba, Matthew A.
    Ding, Siyuan
    VIRUSES-BASEL, 2024, 16 (04):
  • [39] Structural Basis for Human Receptor Recognition by SARS-CoV-2 Omicron Variant BA.1
    Geng, Qibin
    Shi, Ke
    Ye, Gang
    Zhang, Wei
    Aihara, Hideki
    Li, Fang
    JOURNAL OF VIROLOGY, 2022, 96 (08)
  • [40] SARS-CoV-2 Omicron BA.1 Challenge after Ancestral or Delta Infection in Mice
    Baz, Mariana
    Deshpande, Nikita
    Mackenzie-Kludas, Charlie
    Mordant, Francesca
    Anderson, Danielle
    Subbarao, Kanta
    EMERGING INFECTIOUS DISEASES, 2022, 28 (11) : 2352 - 2355