Speech densely connected convolutional networks for small-footprint keyword spotting

被引:0
|
作者
Tsung-Han Tsai
Xin-Hui Lin
机构
[1] Department of Electrical Engineering,
[2] National Central University,undefined
来源
关键词
Keyword spotting; DenseNet; Group convolution; Depthwise separable convolution; SENet;
D O I
暂无
中图分类号
学科分类号
摘要
Keyword spotting is an important task for human-computer interaction (HCI). For high privacy, the identification task needs to be performed at the edge, so the purpose of this task is to improve the accuracy as much as possible within the limited cost. This paper proposes a new keyword spotting technique by the convolutional neural network (CNN) method. It is based on the application of densely connected convolutional networks (DenseNet). To make the model smaller, we replace the normal convolution with group convolution and depthwise separable convolution. We add squeeze-and-excitation networks (SENet) to enhance the weight of important features to increase the accuracy. To investigate the effect of different convolutions on DenseNet, we built two models: SpDenseNet and SpDenseNet-L. we validated the network using the Google speech commands dataset. Our proposed network had better accuracy than the other networks even with a fewer number of parameters and floating-point operations (FLOPs). SpDenseNet could achieve an accuracy of 96.3% with 122.63 K trainable parameters and 142.7 M FLOPs. Compared to the benchmark works, only about 52% of the number of parameters and about 12% of the FLOPs are used. In addition, we varied the depth and width of the network to build a compact variant. It also outperforms other compact variants, where SpDenseNet-L-narrow could achieve an accuracy of 93.6% withiri: An On-device DNN-powere 9.27 K trainable parameters and 3.47 M FLOPs. Compared to the benchmark works, the accuracy on SpDenseNet-L-narrow is improved by 3.5%. It only uses only about 47% of the number of parameters and about 48% of the FLOPS.
引用
收藏
页码:39119 / 39137
页数:18
相关论文
共 50 条
  • [1] Speech densely connected convolutional networks for small-footprint keyword spotting
    Tsai, Tsung-Han
    Lin, Xin-Hui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39119 - 39137
  • [2] Convolutional Neural Networks for Small-footprint Keyword Spotting
    Sainath, Tara N.
    Parada, Carolina
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1478 - 1482
  • [3] Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
    Arik, Sercan O.
    Kliegl, Markus
    Child, Rewon
    Hestness, Joel
    Gibiansky, Andrew
    Fougner, Chris
    Prenger, Ryan
    Coates, Adam
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1606 - 1610
  • [4] SMALL-FOOTPRINT KEYWORD SPOTTING WITH GRAPH CONVOLUTIONAL NETWORK
    Chen, Xi
    Yin, Shouyi
    Song, Dandan
    Ouyang, Peng
    Liu, Leibo
    Wei, Shaojun
    [J]. 2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 539 - 546
  • [5] Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting
    Tsai, Tsung Han
    Lin, Xin Hui
    [J]. 2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,
  • [6] SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKS
    Chen, Guoguo
    Parada, Carolina
    Heigold, Georg
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [7] Building and benchmarking an Arabic Speech Commands dataset for small-footprint keyword spotting
    Ghandoura, Abdulkader
    Hjabo, Farouk
    Al Dakkak, Oumayma
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [8] Compact Feedforward Sequential Memory Networks for Small-footprint Keyword Spotting
    Chen, Mengzhe
    Zhang, Shiliang
    Lei, Ming
    Liu, Yong
    Yao, Haitao
    Gao, Jie
    [J]. 19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2663 - 2667
  • [9] EXPLORING REPRESENTATION LEARNING FOR SMALL-FOOTPRINT KEYWORD SPOTTING
    Cui, Fan
    Guo, Liyong
    Wang, Quandong
    Gao, Peng
    Wang, Yujun
    [J]. INTERSPEECH 2022, 2022, : 3258 - 3262
  • [10] Model compression applied to small-footprint keyword spotting
    Tucker, George
    Wu, Minhua
    Sun, Ming
    Panchapagesan, Sankaran
    Fu, Gengshen
    Vitaladevuni, Shiv
    [J]. 17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 1878 - 1882