Convolutional Neural Networks for Small-footprint Keyword Spotting

被引:0
|
作者
Sainath, Tara N. [1 ]
Parada, Carolina [1 ]
机构
[1] Google Inc, New York, NY 10011 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We explore using Convolutional Neural Networks (CNNs) for a small-footprint keyword spotting (KWS) task. CNNs are attractive for KWS since they have been shown to outperform DNNs with far fewer parameters. We consider two different applications in our work, one where we limit the number of multiplications of the KWS system, and another where we limit the number of parameters. We present new CNN architectures to address the constraints of each applications. We find that the CNN architectures offer between a 27-44% relative improvement in false reject rate compared to a DNN, while fitting into the constraints of each application.
引用
收藏
页码:1478 / 1482
页数:5
相关论文
共 50 条
  • [1] Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
    Arik, Sercan O.
    Kliegl, Markus
    Child, Rewon
    Hestness, Joel
    Gibiansky, Andrew
    Fougner, Chris
    Prenger, Ryan
    Coates, Adam
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1606 - 1610
  • [2] SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKS
    Chen, Guoguo
    Parada, Carolina
    Heigold, Georg
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting
    Tsai, Tsung Han
    Lin, Xin Hui
    [J]. 2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,
  • [4] Speech densely connected convolutional networks for small-footprint keyword spotting
    Tsai, Tsung-Han
    Lin, Xin-Hui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39119 - 39137
  • [5] Speech densely connected convolutional networks for small-footprint keyword spotting
    Tsung-Han Tsai
    Xin-Hui Lin
    [J]. Multimedia Tools and Applications, 2023, 82 : 39119 - 39137
  • [6] SMALL-FOOTPRINT KEYWORD SPOTTING WITH GRAPH CONVOLUTIONAL NETWORK
    Chen, Xi
    Yin, Shouyi
    Song, Dandan
    Ouyang, Peng
    Liu, Leibo
    Wei, Shaojun
    [J]. 2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 539 - 546
  • [7] Small-footprint Spiking Neural Networks for Power-efficient Keyword Spotting
    Pedroni, Bruno U.
    Sheik, Sadique
    Mostafa, Hesham
    Paul, Somnath
    Augustine, Charles
    Cauwenberghs, Gert
    [J]. 2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 591 - 594
  • [8] Compressed time delay neural network for small-footprint keyword spotting
    Sun, Ming
    Snyder, David
    Gao, Yixin
    Nagaraja, Varun
    Rodehorst, Mike
    Panchapagesan, Sankaran
    Strom, Nikko
    Matsoukas, Spyros
    Vitaladevuni, Shiv
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3607 - 3611
  • [9] Compact Feedforward Sequential Memory Networks for Small-footprint Keyword Spotting
    Chen, Mengzhe
    Zhang, Shiliang
    Lei, Ming
    Liu, Yong
    Yao, Haitao
    Gao, Jie
    [J]. 19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2663 - 2667
  • [10] EXPLORING REPRESENTATION LEARNING FOR SMALL-FOOTPRINT KEYWORD SPOTTING
    Cui, Fan
    Guo, Liyong
    Wang, Quandong
    Gao, Peng
    Wang, Yujun
    [J]. INTERSPEECH 2022, 2022, : 3258 - 3262