SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKS

被引:0
|
作者
Chen, Guoguo [1 ]
Parada, Carolina [2 ]
Heigold, Georg [2 ]
机构
[1] Johns Hopkins Univ, Ctr Language & Speech Proc, Baltimore, MD 21218 USA
[2] Google Inc, Mountain View, CA USA
关键词
Deep Neural Network; Keyword Spotting; Embedded Speech Recognition;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Our application requires a keyword spotting system with a small memory footprint, low computational cost, and high precision. To meet these requirements, we propose a simple approach based on deep neural networks. A deep neural network is trained to directly predict the keyword(s) or subword units of the keyword(s) followed by a posterior handling method producing a final confidence score. Keyword recognition results achieve 45% relative improvement with respect to a competitive Hidden Markov Model-based system, while performance in the presence of babble noise shows 39% relative improvement.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Convolutional Neural Networks for Small-footprint Keyword Spotting
    Sainath, Tara N.
    Parada, Carolina
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1478 - 1482
  • [2] Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
    Arik, Sercan O.
    Kliegl, Markus
    Child, Rewon
    Hestness, Joel
    Gibiansky, Andrew
    Fougner, Chris
    Prenger, Ryan
    Coates, Adam
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1606 - 1610
  • [3] Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting
    Tsai, Tsung Han
    Lin, Xin Hui
    [J]. 2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,
  • [4] DEEP RESIDUAL LEARNING FOR SMALL-FOOTPRINT KEYWORD SPOTTING
    Tang, Raphael
    Lin, Jimmy
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5484 - 5488
  • [5] Small-footprint Spiking Neural Networks for Power-efficient Keyword Spotting
    Pedroni, Bruno U.
    Sheik, Sadique
    Mostafa, Hesham
    Paul, Somnath
    Augustine, Charles
    Cauwenberghs, Gert
    [J]. 2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 591 - 594
  • [6] Deep Template Matching for Small-footprint and Configurable Keyword Spotting
    Zhang, Peng
    Zhang, Xueliang
    [J]. INTERSPEECH 2020, 2020, : 2572 - 2576
  • [7] Compressed time delay neural network for small-footprint keyword spotting
    Sun, Ming
    Snyder, David
    Gao, Yixin
    Nagaraja, Varun
    Rodehorst, Mike
    Panchapagesan, Sankaran
    Strom, Nikko
    Matsoukas, Spyros
    Vitaladevuni, Shiv
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3607 - 3611
  • [8] Speech densely connected convolutional networks for small-footprint keyword spotting
    Tsai, Tsung-Han
    Lin, Xin-Hui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39119 - 39137
  • [9] Speech densely connected convolutional networks for small-footprint keyword spotting
    Tsung-Han Tsai
    Xin-Hui Lin
    [J]. Multimedia Tools and Applications, 2023, 82 : 39119 - 39137
  • [10] Compact Feedforward Sequential Memory Networks for Small-footprint Keyword Spotting
    Chen, Mengzhe
    Zhang, Shiliang
    Lei, Ming
    Liu, Yong
    Yao, Haitao
    Gao, Jie
    [J]. 19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2663 - 2667