Neighbor product distinguishing total colorings

被引:0
|
作者
Tong Li
Cunquan Qu
Guanghui Wang
Xiaowei Yu
机构
[1] Shandong University,School of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 33卷
关键词
Proper total coloring; Neighbor product distinguishing ; Maximum degree; Neighbor product distinguishing total chromatic number;
D O I
暂无
中图分类号
学科分类号
摘要
A total-[k]-coloring of a graph G is a mapping ϕ:V(G)∪E(G)→{1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}$$\end{document} such that any two adjacent elements in V(G)∪E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V (G) \cup E(G)$$\end{document} receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that f(u)≠f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)\ne f(v)$$\end{document}, where uv∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. By χ∏″(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{\prime \prime }_{\prod }(G)$$\end{document}, we denote the smallest value k in such a coloring of G. We conjecture that χ∏″(G)≤Δ(G)+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3$$\end{document} for any simple graph with maximum degree Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document}-minor free graph with Δ(G)≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)\ge 4$$\end{document}, then χ∏″(G)≤Δ(G)+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2$$\end{document}.
引用
收藏
页码:237 / 253
页数:16
相关论文
共 50 条
  • [31] Neighbor sum distinguishing total colorings of IC-planar graphs with maximum degree 13
    Chao Song
    Changqing Xu
    Journal of Combinatorial Optimization, 2020, 39 : 293 - 303
  • [33] Neighbor Sum Distinguishing Total Colorings of Graphs with Bounded Maximum Degree and Maximum Average Degree
    Qiu, Baojian
    Wang, Jihui
    Liu, Yan
    Xu, Zhenyu
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 898 - 901
  • [34] Neighbor sum distinguishing total colorings of IC-planar graphs with maximum degree 13
    Song, Chao
    Xu, Changqing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 293 - 303
  • [35] Neighbor sum distinguishing total coloring and list neighbor sum distinguishing total coloring
    Lu, You
    Han, Miaomiao
    Luo, Rong
    DISCRETE APPLIED MATHEMATICS, 2018, 237 : 109 - 115
  • [36] Neighbor Distinguishing Colorings of Graphs with the Restriction for Maximum Average Degree
    Huo, Jingjing
    Wen, Sensen
    Chen, Yulong
    Li, Mingchao
    AXIOMS, 2023, 12 (12)
  • [37] Distance labelings and (total-)neighbor-distinguishing colorings of the edge-multiplicity-paths-replacements
    Lu Damei
    ARS COMBINATORIA, 2017, 131 : 143 - 159
  • [38] Equitable Neighbor Sum Distinguishing Edge Colorings of Some Graphs
    Wang, Jihui
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 891 - 893
  • [39] Neighbor Distinguishing Edge Colorings Via the Combinatorial Nullstellensatz Revisited
    Przybylo, Jakub
    Wong, Tsai-Lien
    JOURNAL OF GRAPH THEORY, 2015, 80 (04) : 299 - 312
  • [40] Vertex Distinguishing Edge- and Total-Colorings of Cartesian and other Product Graphs
    Baril, Jean-Luc
    Kheddouci, Hamamache
    Togni, Olivier
    ARS COMBINATORIA, 2012, 107 : 109 - 127