Neighbor product distinguishing total colorings

被引:0
|
作者
Tong Li
Cunquan Qu
Guanghui Wang
Xiaowei Yu
机构
[1] Shandong University,School of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 33卷
关键词
Proper total coloring; Neighbor product distinguishing ; Maximum degree; Neighbor product distinguishing total chromatic number;
D O I
暂无
中图分类号
学科分类号
摘要
A total-[k]-coloring of a graph G is a mapping ϕ:V(G)∪E(G)→{1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}$$\end{document} such that any two adjacent elements in V(G)∪E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V (G) \cup E(G)$$\end{document} receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that f(u)≠f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)\ne f(v)$$\end{document}, where uv∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. By χ∏″(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{\prime \prime }_{\prod }(G)$$\end{document}, we denote the smallest value k in such a coloring of G. We conjecture that χ∏″(G)≤Δ(G)+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3$$\end{document} for any simple graph with maximum degree Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document}. In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document}-minor free graph with Δ(G)≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)\ge 4$$\end{document}, then χ∏″(G)≤Δ(G)+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2$$\end{document}.
引用
收藏
页码:237 / 253
页数:16
相关论文
共 50 条
  • [21] Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree
    Dong, Ai Jun
    Wang, Guang Hui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 703 - 709
  • [22] Neighbor Sum Distinguishing Total Colorings of Graphs with Bounded Maximum Average Degree
    Ai Jun DONG
    Guang Hui WANG
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (04) : 703 - 709
  • [23] Neighbor sum distinguishing total colorings of planar graphs with girth at least 5
    Li, Jianguo
    Ge, Shan
    Xu, Changqing
    UTILITAS MATHEMATICA, 2017, 104 : 115 - 121
  • [24] Neighbor-distinguishing vertex colorings of graphs
    Chartrand, Gary
    Okamoto, Futaba
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 74 : 223 - 251
  • [25] Adjacent vertex distinguishing edge-colorings and total-colorings of the lexicographic product of graphs
    Tian, Shuangliang
    Wang, Qian
    DISCRETE APPLIED MATHEMATICS, 2015, 185 : 220 - 226
  • [26] ADJACENT VERTEX DISTINGUISHING EDGE-COLORINGS AND TOTAL-COLORINGS OF THE CARTESIAN PRODUCT OF GRAPHS
    Tian, Shuangliang
    Chen, Ping
    Shao, Yabin
    Wang, Qian
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2014, 4 (01): : 49 - 58
  • [27] Neighbor sum distinguishing total colorings of K 4-minor free graphs
    Li, Hualong
    Liu, Bingqiang
    Wang, Guanghui
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (06) : 1351 - 1366
  • [28] Neighbor sum distinguishing total colorings of K4-minor free graphs
    Hualong Li
    Bingqiang Liu
    Guanghui Wang
    Frontiers of Mathematics in China, 2013, 8 : 1351 - 1366
  • [29] Modular neighbor-distinguishing edge colorings of graphs
    Jones, Ryan
    Kolasinski, Kyle
    Okamoto, Futaba
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2011, 76 : 159 - 175
  • [30] Neighbor sum distinguishing edge colorings of sparse graphs
    Hu, Xiaolan
    Chen, Yaojun
    Luo, Rong
    Miao, Zhengke
    DISCRETE APPLIED MATHEMATICS, 2015, 193 : 119 - 125