Universal Scaling Form of the Equation of State of a Critical Pure Fluid

被引:0
|
作者
Y. Garrabos
B. Le Neindre
R. Wunenburger
C. Lecoutre-Chabot
D. Beysens
机构
[1] Université de Bordeaux I,Equipe du Supercritique pour l'Environnement, les Matériaux et l'Espace, Institut de Chimie de la Matière Condensée de Bordeaux, Centre National de la Recherche Scientifique, UPR 9048
[2] Université Paris 13,Laboratoire d'Ingéniérie des Matériaux et des Hautes Pressions, Centre National de la Recherche Scientifique, UPR 1311
[3] Equipe du Supercritique pour l'Environnement,undefined
[4] les Matériaux et l'Espace,undefined
[5] Service des Basses Températures,undefined
[6] Commissariat à l'Energie Atomique,undefined
来源
关键词
critical phenomena; equation of state; gas-liquid critical point; gas-liquid coexistence curve; scaling factors;
D O I
暂无
中图分类号
学科分类号
摘要
Close to the liquid gas critical point, the linear treatment of the symmetrical one-component Φ4 model to observe the fluid-restricted universality of the subclass of pure fluids is reversed. The comparison with the fitting results obtained from the recent applications of the crossover description to CO2, CH4, C2H4, C2H6, R134a, SF6, and H2O confirms that the dimensionless characteristic two scale factors involved in this description are: (a) the critical compressibility factor and (b) the slope at the critical point of the reduced potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{P}{T}\frac{{T_c }}{{P_c }}$$ \end{document} along the critical isochore. For the two-phase domain along the critical isochore, a precise formulation for the extension range of the fluid-restricted universality is given in terms of the reduced scaling size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$l^{* - } = \frac{{\xi ^ - }}{{a_c }}$$ \end{document} of the critical density fluctuations, expressed as a function of the dilated scaling field which measures the distance to the critical point below Tc. The explicit definition of the microscopic length scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a_c = (\frac{{k_B T_c }}{{P_c }})^{\frac{1}{3}} $$ \end{document}, which characterizes the short-range of the microscopic interaction, gives a correlative estimation of the crossover domain when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\xi ^ - \sim a_c $$ \end{document}.
引用
收藏
页码:997 / 1011
页数:14
相关论文
共 50 条
  • [31] The new form of the equation of state for dark energy fluid and accelerating universe
    Nojiri, Shin'ichi
    Odintsov, Sergei D.
    PHYSICS LETTERS B, 2006, 639 (3-4) : 144 - 150
  • [32] The description of fluid criticality by cusp equation of state: Scaling is no longer unique one
    V. Tatarenko, Alexander
    FLUID PHASE EQUILIBRIA, 2022, 562
  • [33] REVISED SCALING EQUATION OF STATE AT LIQUID-VAPOR CRITICAL-POINT
    REHR, JJ
    MERMIN, ND
    PHYSICAL REVIEW A, 1973, 8 (01): : 472 - 480
  • [34] RIGOROUS SCALING-LAW EQUATION OF STATE NEAR CRITICAL-POINT
    GONZALO, JA
    PHYSICAL REVIEW B, 1973, 8 (07): : 3482 - 3483
  • [35] Some characteristics of pure fluid properties that challenge equation-of-state models
    Gregorowicz, J
    OConnell, JP
    Peters, CJ
    FLUID PHASE EQUILIBRIA, 1996, 116 (1-2) : 94 - 101
  • [36] Universal scaling at a prethermal dark state
    Syed, Marvin
    Enss, Tilman
    Defenu, Nicole
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [37] AN IMPROVED LATTICE-FLUID EQUATION OF STATE FOR PURE COMPONENT POLYMERIC FLUIDS
    PANAYIOTOU, C
    VERA, JH
    POLYMER ENGINEERING AND SCIENCE, 1982, 22 (06): : 345 - 348
  • [38] UNIVERSAL SCALING OF FLUID PERMEABILITY FOR SPHERE PACKINGS
    MARTYS, NS
    TORQUATO, S
    BENTZ, DP
    PHYSICAL REVIEW E, 1994, 50 (01): : 403 - 408
  • [39] Universal scaling regimes in rotating fluid turbulence
    Basu, Abhik
    Bhattacharjee, Jayanta K.
    PHYSICAL REVIEW FLUIDS, 2023, 8 (06)
  • [40] A UNIVERSAL EQUATION OF STATE FOR SOLIDS
    VINET, P
    FERRANTE, J
    SMITH, JR
    ROSE, JH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (20): : L467 - L473