On Regularity and Extension of Green’s Operator on Bounded Smooth Domains

被引:0
|
作者
Antti V. Vähäkangas
机构
[1] University of Helsinki,Department of Mathematics and Statistics
来源
Potential Analysis | 2012年 / 37卷
关键词
Second order elliptic PDE’s; Green’s operator; Calderón–Zygmund operator; Weakly singular integral operator; 35A08; 35J25; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove regularity and extension results for Green’s operators that are associated to strictly elliptic second order divergence-type linear PDO’s with coefficients in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{1,\alpha}(\overline{\Omega})$\end{document}. Here α ∈ (0, 1) and Ω ⊂ Rn, n ≥ 3, is a bounded C2,α domain. The regularity result gives boundary estimates for the derivatives up to order (2 + α) of the associated Green’s function. With the aid of this regularity result, we then extend the Green’s operator to a globally defined integral operator whose second order partial derivatives are Calderón–Zygmund singular integrals. We also show that, under reasonable a priori assumptions, the C2,α regularity of the domain is necessary for the aforementioned extension of the Green’s operator to a weakly singular integral operator, belonging to the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{SK}}^{-2}_{{\bf{R}}^n}(\alpha)$\end{document}.
引用
收藏
页码:57 / 77
页数:20
相关论文
共 50 条
  • [21] A regularity property for Schrödinger equations on bounded domains
    Jean-Pierre Puel
    Revista Matemática Complutense, 2013, 26 : 183 - 192
  • [22] Extension of operator Lipschitz and commutator bounded functions
    Kissin, Edward
    Shulman, Victor S.
    Turowska, Lyudmila B.
    EXTENDED FIELD OF OPERATOR THEORY, 2007, 171 : 225 - +
  • [23] On a fractional (s, p)-Dirichlet-to-Neumann operator on bounded Lipschitz domains
    Warma M.
    Journal of Elliptic and Parabolic Equations, 2018, 4 (1) : 223 - 269
  • [24] Extension of bounded holomorphic functions¶in convex domains
    Klas Diederich
    Emmanuel Mazzilli
    manuscripta mathematica, 2001, 105 : 1 - 12
  • [25] Extension of bounded holomorphic functions in convex domains
    Diederich, K
    Mazzilli, E
    MANUSCRIPTA MATHEMATICA, 2001, 105 (01) : 1 - 12
  • [26] Bounded Densities and Their Derivatives: Extension to Other Domains
    Kozine, I.
    Krymsky, V.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2009, 3 (01) : 25 - 38
  • [27] Besov regularity for operator equations on patchwise smooth manifolds
    Dahlke, Stephan
    Weimar, Markus
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (06) : 1533 - 1569
  • [28] Besov regularity for operator equations on patchwise smooth manifolds
    Stephan Dahlke
    Markus Weimar
    Foundations of Computational Mathematics, 2015, 15 : 1533 - 1569
  • [29] On the regularity of the harmonic green potential in nonsmooth domains
    Mitrea, D
    Integral Methods in Science and Engineering: Theoretical and Practical Aspects, 2006, : 177 - 188
  • [30] On Double Hölder regularity of the hydrodynamic pressure in bounded domains
    Luigi De Rosa
    Mickaël Latocca
    Giorgio Stefani
    Calculus of Variations and Partial Differential Equations, 2023, 62