Besov regularity for operator equations on patchwise smooth manifolds

被引:0
|
作者
Stephan Dahlke
Markus Weimar
机构
[1] Philipps-University Marburg,Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization
关键词
Besov spaces; Weighted Sobolev spaces; Wavelets; Adaptive methods; Nonlinear approximation; Integral equations; Double layer; Regularity; Manifolds; 30H25; 35B65; 42C40; 45E99; 46E35; 47B38; 65T60;
D O I
暂无
中图分类号
学科分类号
摘要
We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, e.g., boundaries of polyhedral domains Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^3$$\end{document}. Using suitable biorthogonal wavelet bases Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}, we introduce a new class of Besov-type spaces BΨ,qα(Lp(∂Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\Psi ,q}^\alpha (L_p(\partial \Omega ))$$\end{document} of functions u:∂Ω→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:\partial \Omega \rightarrow \mathbb {C}$$\end{document}. Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} into BΨ,τα(Lτ(∂Ω)),1/τ=α/2+1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\Psi ,\tau }^\alpha (L_\tau (\partial \Omega )), 1/\tau =\alpha /2 + 1/2$$\end{document}, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace’s equation in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}.
引用
收藏
页码:1533 / 1569
页数:36
相关论文
共 50 条
  • [1] Besov regularity for operator equations on patchwise smooth manifolds
    Dahlke, Stephan
    Weimar, Markus
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (06) : 1533 - 1569
  • [2] Regularity of functional equations on manifolds
    Járai A.
    aequationes mathematicae, 2002, 64 (3) : 248 - 262
  • [3] Besov regularity for a class of singular or degenerate elliptic equations
    Ambrosio, Pasquale
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [4] Besov regularity for solutions of p-harmonic equations
    Clop, Albert
    Giova, Raffaella
    di Napoli, Antonia Passarelli
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 762 - 778
  • [5] On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces
    Barbagallo, Annamaria
    Gala, Sadek
    Ragusa, Maria Alessandra
    Thera, Michel
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (03) : 637 - 649
  • [6] Besov regularity for solutions of elliptic equations with variable exponents
    Giova, Raffaella
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (08) : 1459 - 1480
  • [7] On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces
    Annamaria Barbagallo
    Sadek Gala
    Maria Alessandra Ragusa
    Michel Théra
    Vietnam Journal of Mathematics, 2021, 49 : 637 - 649
  • [8] On Besov regularity of solutions to nonlinear elliptic partial differential equations
    Stephan Dahlke
    Winfried Sickel
    Revista Matemática Complutense, 2013, 26 : 115 - 145
  • [9] On Besov regularity of solutions to nonlinear elliptic partial differential equations
    Dahlke, Stephan
    Sickel, Winfried
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 115 - 145
  • [10] On Besov regularity of solutions to nonlinear elliptic partial differential equations
    Dahlke, Stephan
    Hansen, Markus
    Schneider, Cornelia
    Sickel, Winfried
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192