End-to-end deep learning-based autonomous driving control for high-speed environment

被引:0
|
作者
Cheol-jin Kim
Myung-jae Lee
Kyu-hong Hwang
Young-guk Ha
机构
[1] Konkuk University,
来源
关键词
Autonomous driving; End-to-end learning; CNN; LSTM;
D O I
暂无
中图分类号
学科分类号
摘要
With the recent emergence of artificial intelligence (AI) technology, autonomous vehicle industry has rapidly adopted this technology to investigate self-driving systems based on AI technology. Although autonomous driving is frequently used in high-speed environments, most studies are conducted on low-speed driving on complex urban roads. Currently, most commercialized self-driving cars in SAE autonomous driving level 2 provide practical performance on high-speed roads using various sensors. However, these systems have to process huge sensor data and apply complex control algorithms. Recently, studies have been conducted on the use of image-based end-to-end deep learning to control autonomous driving systems that can be configured at a low cost without expensive sensors and complex processes. In this study, we proposed an autonomous driving control system using a novel end-to-end deep learning model for high-speed environments, and also compared the performance of the proposed system with NVIDIA end-to-end driving system.
引用
收藏
页码:1961 / 1982
页数:21
相关论文
共 50 条
  • [41] Deep Learning-based Frame and Timing Synchronization for End-to-End Communications
    Wu, Hengmiao
    Sun, Zhuo
    Zhou, Xue
    2018 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING, 2019, 1169
  • [42] End-to-End Deep Learning for Autonomous Vehicles Lateral Control Using CNN
    Oussama, Aatiq
    Mohamed, Talea
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 705 - 712
  • [43] End-to-End Deep Learning Model for Steering Angle Control of Autonomous Vehicles
    Khanum, Abida
    Lee, Chao-Yang
    Yang, Chu-Sing
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 189 - 192
  • [44] End-to-End Deep Neural Network Architectures for Speed and Steering Wheel Angle Prediction in Autonomous Driving
    Navarro, Pedro J.
    Miller, Leanne
    Rosique, Francisca
    Fernandez-Isla, Carlos
    Gila-Navarro, Alberto
    ELECTRONICS, 2021, 10 (11)
  • [45] Robust Autonomous Driving Control using Auto-Encoder and End-to-End Deep Learning under Rainy Conditions
    Phuc Phan Hong
    Anh Nguyen Quoc
    Luyl-Da Quach
    Hoang Tran Ngoc
    PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2023, 2023, : 271 - 278
  • [46] Adversarial Driving: Attacking End-to-End Autonomous Driving
    Wu, Han
    Yunas, Syed
    Rowlands, Sareh
    Ruan, Wenjie
    Wahlstrom, Johan
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [47] An End-to-End Learning-based Cost Estimator
    Sun, Ji
    Li, Guoliang
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 13 (03): : 307 - 319
  • [48] An End-to-End solution to Autonomous Driving based on Xilinx FPGAd
    Wu, Tianze
    Liu, Weiyi
    Jin, Yongwei
    2019 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2019), 2019, : 427 - 430
  • [49] Evaluation of End-To-End Learning for Autonomous Driving: The Good, the Bad and the Ugly
    Varisteas, Georgios
    Frank, Raphael
    Alamdari, Seyed Amin Sajadi
    Voos, Holger
    State, Radu
    2019 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2019), 2019, : 110 - 117
  • [50] End-to-End Learning of Behavioural Inputs for Autonomous Driving in Dense Traffic
    Shrestha, Jatan
    Idoko, Simon
    Sharma, Basant
    Singh, Arun Kumar
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10020 - 10027