End-to-end deep learning-based autonomous driving control for high-speed environment

被引:0
|
作者
Cheol-jin Kim
Myung-jae Lee
Kyu-hong Hwang
Young-guk Ha
机构
[1] Konkuk University,
来源
关键词
Autonomous driving; End-to-end learning; CNN; LSTM;
D O I
暂无
中图分类号
学科分类号
摘要
With the recent emergence of artificial intelligence (AI) technology, autonomous vehicle industry has rapidly adopted this technology to investigate self-driving systems based on AI technology. Although autonomous driving is frequently used in high-speed environments, most studies are conducted on low-speed driving on complex urban roads. Currently, most commercialized self-driving cars in SAE autonomous driving level 2 provide practical performance on high-speed roads using various sensors. However, these systems have to process huge sensor data and apply complex control algorithms. Recently, studies have been conducted on the use of image-based end-to-end deep learning to control autonomous driving systems that can be configured at a low cost without expensive sensors and complex processes. In this study, we proposed an autonomous driving control system using a novel end-to-end deep learning model for high-speed environments, and also compared the performance of the proposed system with NVIDIA end-to-end driving system.
引用
收藏
页码:1961 / 1982
页数:21
相关论文
共 50 条
  • [31] End-to-end Autonomous Driving in Heterogeneous Traffic Scenario Using Deep Reinforcement Learning
    Chakraborty, Soumyajit
    Kumar, Subhadeep
    Bhatt, Nirav
    Pasumarthy, Ramkrishna
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [32] An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments
    Dooraki, Amir Ramezani
    Lee, Deok-Jin
    SENSORS, 2018, 18 (10)
  • [33] Diffusion-type autonomous decentralized flow control for end-to-end flow in high-speed networks
    Takano, C
    Aida, M
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2005, E88B (04) : 1559 - 1567
  • [34] End-to-end driving model based on deep learning and attention mechanism
    Zhu, Wuqiang
    Lu, Yang
    Zhang, Yongliang
    Wei, Xing
    Wei, Zhen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3337 - 3348
  • [35] End-to-End Race Driving with Deep Reinforcement Learning
    Jaritz, Maximilian
    de Charette, Raoul
    Toromanoff, Marin
    Perot, Etienne
    Nashashibi, Fawzi
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 2070 - 2075
  • [36] Hierarchical Interpretable Imitation Learning for End-to-End Autonomous Driving
    Teng, Siyu
    Chen, Long
    Ai, Yunfeng
    Zhou, Yuanye
    Xuanyuan, Zhe
    Hu, Xuemin
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 673 - 683
  • [37] An End-to-End Curriculum Learning Approach for Autonomous Driving Scenarios
    Anzalone, Luca
    Barra, Paola
    Barra, Silvio
    Castiglione, Aniello
    Nappi, Michele
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19817 - 19826
  • [38] Explaining Autonomous Driving by Learning End-to-End Visual Attention
    Cultrera, Luca
    Seidenari, Lorenzo
    Becattini, Federico
    Pala, Pietro
    Del Bimbo, Alberto
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1389 - 1398
  • [39] Multimodal End-to-End Autonomous Driving
    Xiao, Yi
    Codevilla, Felipe
    Gurram, Akhil
    Urfalioglu, Onay
    Lopez, Antonio M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 537 - 547
  • [40] Learning a Deep Neural Net Policy for End-to-End Control of Autonomous Vehicles
    Rausch, Viktor
    Hansen, Andreas
    Solowjow, Eugen
    Liu, Chang
    Kreuzer, Edwin
    Hedrick, J. Karl
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4914 - 4919