On weakly closed subgroups of finite groups

被引:0
|
作者
Zhencai Shen
Yingyi Chen
Shirong Li
机构
[1] China Agricultural University,Department of Mathematics of College of Science
[2] China Agricultural University,College of Information and Electrical Engineering
[3] Guangxi University,Department of Mathematics
来源
关键词
Weakly closed subgroup; Nilpotent group; Supersolvable group; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a finite group and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is weakly closed in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with respect to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} if, for any g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document} such that Hg≤K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}\le K$$\end{document}, we have Hg=H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}=H$$\end{document}. In particular, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is a subgroup of prime-power order and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is a Sylow subgroup containing it, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is simply said to be a weakly closed subgroup of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} or weakly closed in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In the paper, we investigate the structure of finite groups by means of weakly closed subgroups.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [41] Finite groups with H-subgroups or strongly closed subgroups
    Shen, Zhencai
    Li, Shirong
    JOURNAL OF GROUP THEORY, 2012, 15 (01) : 85 - 100
  • [42] FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE WEAKLY H-SUBGROUPS
    M.M.Al-Mosa Al-Shomrani
    M.Ramadan
    A.A.Heliel
    Acta Mathematica Scientia, 2012, 32 (06) : 2295 - 2301
  • [43] FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE WEAKLY H-SUBGROUPS
    Al-Shomrani, M. M. Al-Mosa
    Ramadan, M.
    Heliel, A. A.
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (06) : 2295 - 2301
  • [44] On finite groups with s-weakly normal subgroups
    Huo, Lijun
    Cheng, Weidong
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 805 - 815
  • [45] On weakly H-subgroups of finite groups II
    Chen, Ruifang
    Li, Xiaoli
    Zhao, Xianhe
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 4009 - 4015
  • [46] A note on weakly-supplemented subgroups of finite groups
    Hong Pan
    Czechoslovak Mathematical Journal, 2018, 68 : 1051 - 1054
  • [48] On weakly s-normal subgroups of finite groups
    Li, Y.
    Qiao, S.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 63 (11) : 1770 - 1780
  • [49] On weakly S-embedded subgroups of finite groups
    JinBao Li
    GuiYun Chen
    RuiFang Chen
    Science China Mathematics, 2011, 54 : 1899 - 1908
  • [50] On Weakly H-embedded Subgroups of Finite Groups
    Asaad, M.
    Ramadan, M.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (10) : 4564 - 4574