On weakly closed subgroups of finite groups

被引:0
|
作者
Zhencai Shen
Yingyi Chen
Shirong Li
机构
[1] China Agricultural University,Department of Mathematics of College of Science
[2] China Agricultural University,College of Information and Electrical Engineering
[3] Guangxi University,Department of Mathematics
来源
关键词
Weakly closed subgroup; Nilpotent group; Supersolvable group; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a finite group and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is weakly closed in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with respect to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} if, for any g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document} such that Hg≤K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}\le K$$\end{document}, we have Hg=H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}=H$$\end{document}. In particular, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is a subgroup of prime-power order and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is a Sylow subgroup containing it, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is simply said to be a weakly closed subgroup of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} or weakly closed in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In the paper, we investigate the structure of finite groups by means of weakly closed subgroups.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [31] ON WEAKLY tcc-SUBGROUPS OF FINITE GROUPS
    Trofimuk, A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 1464 - 1473
  • [32] Finite Groups with Given Weakly σ-Permutable Subgroups
    C. Cao
    Z. Wu
    W. Guo
    Siberian Mathematical Journal, 2018, 59 : 157 - 165
  • [33] On Finite Groups Factorizable by Weakly Subnormal Subgroups
    A. A. Trofimuk
    Siberian Mathematical Journal, 2021, 62 : 1133 - 1139
  • [34] On weakly SΦ-supplemented subgroups of finite groups
    Zh. Wu
    Y. Mao
    W. Guo
    Siberian Mathematical Journal, 2016, 57 : 696 - 703
  • [35] On Weakly -Supplemented Subgroups and the -Hypercentre of Finite Groups
    Miao, Liyun
    Guo, Xiuyun
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (06) : 1449 - 1456
  • [36] ON FINITE GROUPS FACTORIZABLE BY WEAKLY SUBNORMAL SUBGROUPS
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) : 1133 - 1139
  • [37] On Weakly-Supplemented Subgroups of Finite Groups
    Kong, Qingjun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) : 39 - 43
  • [38] THE INFLUENCE OF WEAKLY CLOSED SUBGROUPS ON THE SUPERSOLVABILITY OF A FINITE GROUP
    Zhao, Tao
    Xue, Ling
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2022, 55 : 1 - 7
  • [39] On the strongly closed subgroups or H-subgroups of finite groups
    Shen, Zh. C.
    Shi, W. J.
    Shen, R. L.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (03) : 578 - 584
  • [40] On the strongly closed subgroups or H-subgroups of finite groups
    Zh. C. Shen
    W. J. Shi
    R. L. Shen
    Siberian Mathematical Journal, 2014, 55 : 578 - 584