Arbitrarily distortable Banach spaces of higher order

被引:0
|
作者
Kevin Beanland
Ryan Causey
Pavlos Motakis
机构
[1] Washington and Lee University,Department of Mathematics
[2] University of South Carolina,Department of Mathematics
[3] Texas A&M University College Station,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study an ordinal rank on the class of Banach spaces with bases that quantifies the distortion of the norm of a given Banach space. The rank AD(•), introduced by P. Dodos, uses the transfinite Schreier families and has the property that AD(X) < ω1 if and only if X is arbitrarily distortable. We prove several properties of this rank as well as some new results concerning higher order l1 spreading models. We also compute this rank for several Banach spaces. In particular, it is shown that the class of Banach spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {X_0^{{\omega ^\xi }}} \right)\xi < {\omega _1}$$\end{document}, which each admit l1 and c0 spreading models hereditarily, and were introduced by S. A. Argyros, the first and third author, satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AD\left( {X_0^{{\omega ^\xi }}} \right) = {\omega ^\xi } + 1$$\end{document}. This answers some questions of Dodos.
引用
收藏
页码:553 / 581
页数:28
相关论文
共 50 条
  • [41] Reverse Order Law for the Drazin Inverse in Banach Spaces
    Wang, Hua
    Huang, Junjie
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (05) : 1443 - 1456
  • [42] Banach spaces and groups - Order properties and universal models
    Shelah, Saharon
    Usvyatsov, Alex
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2006, 152 (1) : 245 - 270
  • [43] ON SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Kamenskii, Mikhail
    Obukhovskii, Valeri
    Petrosyan, Garik
    Yao, Jen-Chih
    [J]. FIXED POINT THEORY, 2017, 18 (01): : 269 - 291
  • [44] Reverse Order Law for the Drazin Inverse in Banach Spaces
    Hua Wang
    Junjie Huang
    [J]. Bulletin of the Iranian Mathematical Society, 2019, 45 : 1443 - 1456
  • [45] High order smoothness and asymptotic structure in banach spaces
    Gonzalo, R.
    Jaramillo, J. A.
    Troyanski, S. L.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2007, 14 (02) : 249 - 269
  • [46] wMB-PROPERTY OF ORDER p IN BANACH SPACES
    Esfahani, Manijeh Bahreini
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (01): : 29 - 37
  • [47] Existence and nonexistence of positive solutions for nonlinear higher order BVP with fractional integral boundary conditions in Banach spaces
    Fulya Yoruk Deren
    [J]. Advances in Difference Equations, 2015
  • [48] REGULAR BOUNDARY VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL-OPERATOR EQUATIONS OF HIGHER ORDER IN UMD BANACH SPACES
    Favini, Angelo
    Yakubov, Yakov
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 595 - 614
  • [49] Existence and nonexistence of positive solutions for nonlinear higher order BVP with fractional integral boundary conditions in Banach spaces
    Deren, Fulya Yoruk
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 24
  • [50] Higher order flatness of lens spaces
    Lutgen, J
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (03): : 511 - 532