ON SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS IN BANACH SPACES

被引:22
|
作者
Kamenskii, Mikhail [1 ,2 ]
Obukhovskii, Valeri [3 ,4 ]
Petrosyan, Garik [3 ]
Yao, Jen-Chih [5 ]
机构
[1] Voronezh State Univ, Fac Math, 6 Miklukho Malaya st, Moscow 117198, Russia
[2] RUDN Univ, Fac Math, 6 Miklukho Malaya st, Moscow 117198, Russia
[3] Voronezh State Pedag Univ, Fac Math & Phys, 6 Miklukho Malaya st, Moscow 117198, Russia
[4] RUDN Univ, 6 Miklukho Malaya st, Moscow 117198, Russia
[5] Kaohsiung Med Univ, Ctr Gen Educ, Kaohsiung, Taiwan
来源
FIXED POINT THEORY | 2017年 / 18卷 / 01期
基金
俄罗斯科学基金会;
关键词
Fractional differential inclusion; semilinear differential inclusion; Cauchy problem; continuous dependence of solutions; averaging principle; fixed point; multivalued map; condensing map; measure of noncompactness; EXISTENCE;
D O I
10.24193/fpt-ro.2017.1.22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are considering the Cauchy problem for a semilinear fractional differential inclusion in a Banach space. By using the fixed point theory for condensing multivalued maps, we prove the local and global theorems of the existence of mild solutions to this problem. We verify the compactness of the solutions set and its continuous dependence on parameters and initial data. We demonstrate also the application of the averaging principle to the investigation of the continuous dependence of the solutions set on a parameter in the case when the right-hand side of the inclusion is rapidly oscillating.
引用
收藏
页码:269 / 291
页数:23
相关论文
共 50 条