Differential Equations and Inclusions of Fractional Order with Impulse Effects in Banach Spaces

被引:0
|
作者
Ahmed Gamal Ibrahim
机构
[1] King Faisal University,Department of Mathematics, Faculty of Sciences
关键词
Boundary value problems; Fractional derivative; Impulsive differential inclusions; Measure of noncompactness; Primary 34A60; 26A33; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with the existence of solutions, in infinite- dimensional Banach spaces, for impulsive differential inclusions and equations of order q∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,2)$$\end{document}, with anti-periodic conditions and involving the Caputo derivative whether in the generalized sense (via the Riemann–Liouville fractional derivative,) or in the normal sense and whether the lower limit on each impulsive subinterval (ti,ti+1],i=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (t_{i} ,t_{i+1}],\, i=0,1,\ldots ,m$$\end{document} is keep at zero or is set at ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{i}$$\end{document}. Using the technique of fixed point and the properties of the measure of noncompactness, existence results are obtained. Moreover, we derive in reflexive Banach spaces, by using a new version weakly convergent criteria in the space of piecewise continuous functions, an existence result of solutions without assuming any condition on the multivalued function in terms of measure of noncompactness. Some examples will be given to illustrate the obtained results.
引用
收藏
页码:69 / 109
页数:40
相关论文
共 50 条
  • [2] ON SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Kamenskii, Mikhail
    Obukhovskii, Valeri
    Petrosyan, Garik
    Yao, Jen-Chih
    [J]. FIXED POINT THEORY, 2017, 18 (01): : 269 - 291
  • [3] General fractional differential equations of order and Type in Banach spaces
    Mei, Zhan-Dong
    Peng, Ji-Gen
    Gao, Jing-Huai
    [J]. SEMIGROUP FORUM, 2017, 94 (03) : 712 - 737
  • [4] ON CONTROLLABILITY FOR FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Wang, JinRong
    Li, XueZhu
    Wei, Wei
    [J]. OPUSCULA MATHEMATICA, 2012, 32 (02) : 341 - 356
  • [5] Nonlocal Cauchy problems for semilinear differential inclusions with fractional order in Banach spaces
    Wang, JinRong
    Ibrahim, A. G.
    Feckan, Michal
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 27 (1-3) : 281 - 293
  • [6] (?,?)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
    Feckan, Michal
    Kostic, Marko
    Velinov, Daniel
    [J]. MATHEMATICS, 2023, 11 (14)
  • [7] Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order
    Lv, Zhi-Wei
    Liang, Jin
    Xiao, Ti-Jun
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1303 - 1311
  • [8] A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces
    Cuesta, E
    Palencia, C
    [J]. APPLIED NUMERICAL MATHEMATICS, 2003, 45 (2-3) : 139 - 159
  • [9] ABSTRACT DEGENERATE FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Kostic, Marko
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) : 39 - 61
  • [10] Proportional Caputo Fractional Differential Inclusions in Banach Spaces
    Rahmani, Abdelkader
    Du, Wei-Shih
    Khalladi, Mohammed Taha
    Kostic, Marko
    Velinov, Daniel
    [J]. SYMMETRY-BASEL, 2022, 14 (09):