Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result

被引:0
|
作者
M. M. Cavalcanti
V. N. Domingos Cavalcanti
R. Fukuoka
J. A. Soriano
机构
[1] State University of Maringá,Department of Mathematics
关键词
Manifold; Wave Equation; Riemannian Manifold; Open Subset; Smooth Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a n-dimensional (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geqq 2}$$\end{document}) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C∞. This paper is concerned with the study of the wave equation on (M, g) with locally distributed damping, described by\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left. \begin{array}{l} u_{tt} - \Delta_{{\bf g}}u+ a(x)\,g(u_{t})=0,\quad\hbox{on\ \thinspace}{M}\times \left] 0,\infty\right[ ,u=0\,\hbox{on}\,\partial M \times \left] 0,\infty \right[, \end{array} \right. $$\end{document}where ∂M represents the boundary of M and a(x) g(ut) is the damping term. The main goal of the present manuscript is to generalize our previous result in Cavalcanti et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for n-dimensional compact Riemannian manifolds (M, g) with boundary in two ways: (i) by reducing arbitrarily the region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_\ast \subset M}$$\end{document} where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely, a precise part of radially symmetric subsets. An analogous result holds for compact Riemannian manifolds without boundary.
引用
收藏
页码:925 / 964
页数:39
相关论文
共 50 条
  • [1] Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Fukuoka, R.
    Soriano, J. A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (03) : 925 - 964
  • [2] ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING-A SHARP RESULT
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domincos
    Fukuoka, R.
    Soriano, J. A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) : 4561 - 4580
  • [3] Uniform stabilization of the wave equation on compact manifolds and locally distributed damping - a sharp result
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Fukuoka, R.
    Soriano, J. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 661 - 674
  • [4] ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT MANIFOLDS AND LOCALLY DISTRIBUTED VISCOELASTIC DISSIPATION
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Nascimento, Flavio A. F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 3183 - 3193
  • [5] ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT MANIFOLDS AND LOCALLY DISTRIBUTED VISCOELASTIC DISSIPATION (vol 141, pg 3183, 2013)
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falcao Nascimento, F. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (09) : 4097 - 4097
  • [6] UNIFORM STABILIZATION OF THE WAVE EQUATION ON COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Fukuoka, R.
    Soriano, J. A.
    METHODS AND APPLICATIONS OF ANALYSIS, 2008, 15 (04) : 405 - 425
  • [7] Existence and asymptotic stability for the wave equation on compact manifolds with nonlinearities of arbitrary growth
    Cavalcanti, Marcelo M.
    Cavalcanti, Valeria N. Domingos
    Antunes, Jose Guilherme Simion
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 248
  • [8] Exponential stability of the nonlinear Schrodinger equation with locally distributed damping on compact Riemannian manifold
    Yang, Fengyan
    Ning, Zhen-Hu
    Chen, Liangbiao
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 569 - 583
  • [9] Asymptotic stability of diffusion wave for a semilinear wave equation with damping
    Yong, Yan
    Su, Junmei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [10] Stabilization of the Kirchhoff type wave equation with locally distributed damping
    Kang, Yong Han
    Lee, Mi Jin
    Jung, Il Hyo
    APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 719 - 722