Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations

被引:0
|
作者
Yves Bourgault
André Garon
机构
[1] University of Ottawa,Department of Mathematics and Statistics
[2] École Polytechnique,undefined
[3] Université de Montréal,undefined
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Ordinary differential equations; High-order time-stepping methods; Deferred correction; A-stability; Backward differentiation formulae; 5B05; 65L04; 65L05; 65L12; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p-order solution (DCp) results in a p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}-order accurate solution (DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DCp to DCp+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. These requirements include the constant time step DCp methods. We also prove that all these DCp methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DCp to DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DCp – for DCp, p=2,3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,3,4,5$$\end{document} – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DCp solution with the DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
引用
收藏
页码:1789 / 1822
页数:33
相关论文
共 50 条
  • [31] VARIABLE-STEP VARIABLE-ORDER ALGORITHM FOR THE NUMERICAL-SOLUTION OF NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS
    JACKIEWICZ, Z
    APPLIED NUMERICAL MATHEMATICS, 1987, 3 (04) : 317 - 329
  • [32] Parallel block backward differentiation formulas for solving large systems of ordinary differential equations
    Zarina Bibi, I.
    Khairil Iskandar, O.
    World Academy of Science, Engineering and Technology, 2010, 40 : 595 - 598
  • [33] Direct block backward differentiation formulas for solving second order ordinary differential equations
    Ibrahim, Zarina Bibi
    Suleiman, Mohamed
    Othman, Khairil Iskandar
    World Academy of Science, Engineering and Technology, 2009, 40 : 57 - 59
  • [34] An eighth order backward differentiation formula with continuous coefficients for stiff ordinary differential equations
    Akinfenwa, Olusheye
    Jator, Samuel
    Yoa, Nianmin
    World Academy of Science, Engineering and Technology, 2011, 74 : 848 - 853
  • [35] Direct block backward differentiation formulas for solving second order ordinary differential equations
    Ibrahim, Zarina Bibi
    Suleiman, Mohamed
    Othman, Khairil Iskandar
    International Journal of Computational and Mathematical Sciences, 2009, 3 (03): : 120 - 122
  • [36] Stiffly Stable Diagonally Implicit Block Backward Differentiation Formula with Adaptive Step Size Strategy for Stiff Ordinary Differential Equations
    Ijam, Hazizah Mohd
    Ibrahim, Zarina Bibi
    Zawawi, Iskandar Shah Mohd
    MATEMATIKA, 2024, 40 (01) : 27 - 47
  • [37] Fixed Coefficient A(α) Stable Block Backward Differentiation Formulas for Stiff Ordinary Differential Equations
    Ibrahim, Zarina Bibi
    Noor, Nursyazwani Mohd
    Othman, Khairil Iskandar
    SYMMETRY-BASEL, 2019, 11 (07):
  • [38] SEMI-IMPLICIT KRYLOV DEFERRED CORRECTION METHODS FOR DIFFERENTIAL ALGEBRAIC EQUATIONS
    Bu, Sunyoung
    Huang, Jingfang
    Minion, Michael L.
    MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2127 - 2157
  • [39] A general family of two step collocation methods for ordinary differential equations
    D'Ambrosio, R.
    Ferro, M.
    Patemoster, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 45 - +
  • [40] Two-step almost collocation methods for ordinary differential equations
    D'Ambrosio, R.
    Ferro, M.
    Jackiewicz, Z.
    Paternoster, B.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 195 - 217