Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations

被引:0
|
作者
Yves Bourgault
André Garon
机构
[1] University of Ottawa,Department of Mathematics and Statistics
[2] École Polytechnique,undefined
[3] Université de Montréal,undefined
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Ordinary differential equations; High-order time-stepping methods; Deferred correction; A-stability; Backward differentiation formulae; 5B05; 65L04; 65L05; 65L12; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p-order solution (DCp) results in a p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}-order accurate solution (DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DCp to DCp+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. These requirements include the constant time step DCp methods. We also prove that all these DCp methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DCp to DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DCp – for DCp, p=2,3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,3,4,5$$\end{document} – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DCp solution with the DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
引用
收藏
页码:1789 / 1822
页数:33
相关论文
共 50 条
  • [21] Fifth order variable step block backward differentiation formulae for solving stiff ODEs
    Yatim, S.A.M.
    Ibrahim, Z.B.
    Othman, K.I.
    Ismail, F.
    World Academy of Science, Engineering and Technology, 2010, 62 : 998 - 1000
  • [22] A NEW SUPERCLASS OF BLOCK BACKWARD DIFFERENTIATION FORMULA FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS
    Suleiman, M. B.
    Musa, H.
    Ismail, F.
    Senu, N.
    Ibrahim, Z. B.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (01)
  • [23] Solving Stiff Ordinary Differential Equations Using Block Backward Differentiation Formulas
    Ibrahim, Zarina Bibi
    Suleiman, Mohamed
    Othman, Khairil Iskandar
    MATEMATIKA, 2009, 25 (01) : 9 - 14
  • [24] Continuous block backward differentiation formula for solving stiff ordinary differential equations
    Akinfenwa, O. A.
    Jator, S. N.
    Yao, N. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (07) : 996 - 1005
  • [25] EXTRAPOLANT FORMULATION OF IMPLICIT BACKWARD DIFFERENTIATION METHOD FOR ORDINARY DIFFERENTIAL-EQUATIONS
    WINSLOW, AM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1977, 173 (MAR20): : 149 - 149
  • [26] Arbitrary order Krylov deferred correction methods for differential algebraic equations
    Huang, Jingfang
    Jia, Jun
    Minion, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (02) : 739 - 760
  • [27] HENRICI,P - DISCRETE VARIABLE METHODS IN ORDINARY DIFFERENTIAL EQUATIONS
    SCHMIDT, JW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1966, 46 (05): : 327 - &
  • [28] On the Derivation of Second Order Variable Step Variable Order Block Backward Differentiation Formulae for Solving Stiff ODEs
    Yatim, Siti Ainor Mohd
    Ibrahim, Zarina Bibi
    Othman, Khairil Iskandar
    Suleiman, Mohamed
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 335 - 338
  • [29] Variable stepsize continuous two-step Runge-Kutta methods for ordinary differential equations
    Jackiewicz, Z
    Tracogna, S
    NUMERICAL ALGORITHMS, 1996, 12 (3-4) : 347 - 368
  • [30] ON SOLUTIONS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS BASED ON ELASTIC TRANSFORMATION METHODS
    Zheng, Pengshe
    Tang, Ya
    Li, Shunchu
    Dong, Xiaoxu
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 299 - 308