Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations

被引:0
|
作者
Yves Bourgault
André Garon
机构
[1] University of Ottawa,Department of Mathematics and Statistics
[2] École Polytechnique,undefined
[3] Université de Montréal,undefined
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Ordinary differential equations; High-order time-stepping methods; Deferred correction; A-stability; Backward differentiation formulae; 5B05; 65L04; 65L05; 65L12; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p-order solution (DCp) results in a p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}-order accurate solution (DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DCp to DCp+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. These requirements include the constant time step DCp methods. We also prove that all these DCp methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DCp to DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DCp – for DCp, p=2,3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,3,4,5$$\end{document} – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DCp solution with the DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
引用
收藏
页码:1789 / 1822
页数:33
相关论文
共 50 条
  • [1] Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations
    Bourgault, Yves
    Garon, Andre
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1789 - 1822
  • [2] Deferred Correction Methods for Ordinary Differential Equations
    Benjamin W. Ong
    Raymond J. Spiteri
    Journal of Scientific Computing, 2020, 83
  • [3] Deferred Correction Methods for Ordinary Differential Equations
    Ong, Benjamin W.
    Spiteri, Raymond J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [4] Global extrapolation for variable-step integration of ordinary differential equations
    Ashour, SS
    Hanna, OT
    COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 (11) : 1267 - 1270
  • [5] Spectral deferred correction methods for ordinary differential equations
    Dutt, A
    Greengard, L
    Rokhlin, V
    BIT, 2000, 40 (02): : 241 - 266
  • [6] Spectral Deferred Correction Methods for Ordinary Differential Equations
    Alok Dutt
    Leslie Greengard
    Vladimir Rokhlin
    BIT Numerical Mathematics, 2000, 40 : 241 - 266
  • [7] Deferred Correction Methods for Forward Backward Stochastic Differential Equations
    Tang, Tao
    Zhao, Weidong
    Zhou, Tao
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (02) : 222 - 242
  • [8] Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae
    Asnor, Asma Izzati
    Yatim, Siti Ainor Mohd
    Ibrahim, Zarina Bibi
    SYMMETRY-BASEL, 2019, 11 (10):
  • [9] Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations
    Bu, Sunyoung
    Huang, Jingfang
    Minion, Michael L.
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 95 - +
  • [10] Explicit Deferred Correction Methods for Second-Order Forward Backward Stochastic Differential Equations
    Yang, Jie
    Zhao, Weidong
    Zhou, Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) : 1409 - 1432