Local separation in distributive semilattices

被引:0
|
作者
Miroslav Ploščica
机构
[1] Slovak Academy of Sciences,Mathematical Institute
来源
algebra universalis | 2005年 / 54卷
关键词
06B10; 54H10; 08A30; Congruence; distributive semilattice; refinement;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the Local Separation Property (LSP) for distributive semilattices. We show that LSP holds in many semilattices of the form ConcA, where A is a lattice. On the other hand, we construct an abstract example of a distributive lattice without LSP. Our research is connected with the well known open problem whether every distributive algebraic lattice is isomorphic to the congruence lattice of some lattice.
引用
收藏
页码:323 / 335
页数:12
相关论文
共 50 条
  • [21] Injective Hulls in the Category of Mildly Distributive Semilattices
    Xia, Changchun
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (03): : 381 - 388
  • [22] Some Characterizations of 0-Distributive Semilattices
    Chakraborty, H. S.
    Talukder, M. R.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (04) : 1103 - 1110
  • [23] Injective Hulls in the Category of Mildly Distributive Semilattices
    Changchun Xia
    Order, 2022, 39 : 381 - 388
  • [24] THE WORD PROBLEM IN THE TENSOR PRODUCT OF DISTRIBUTIVE SEMILATTICES
    FRASER, GA
    BELL, AM
    SEMIGROUP FORUM, 1984, 30 (01) : 117 - 120
  • [25] α-filters and α-order-ideals in distributive quasicomplemented semilattices
    Calomino, Ismael
    Celani, Sergio
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2021, 62 (01): : 15 - 32
  • [26] ALPHA-IDEALS IN O-DISTRIBUTIVE SEMILATTICES AND O-DISTRIBUTIVE LATTICES
    PAWAR, YS
    MANE, DN
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (7-8): : 435 - 443
  • [27] Priestley Style Duality for Distributive Meet-semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    STUDIA LOGICA, 2011, 98 (1-2) : 83 - 122
  • [28] Priestley Style Duality for Distributive Meet-semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Studia Logica, 2011, 98 : 83 - 122
  • [29] A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE MEET-SEMILATTICES
    Celani, Sergio A.
    Gonzalez, Luciano J.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (02): : 265 - 284
  • [30] SOME PROPERTIES OF 1-DISTRIBUTIVE JOIN SEMILATTICES
    Akhter, Shiuly
    Noor, A. S. A.
    Ali, M. Ayub
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2015, 9 (02): : 1377 - 1384