A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE MEET-SEMILATTICES

被引:3
|
作者
Celani, Sergio A. [1 ]
Gonzalez, Luciano J. [2 ]
机构
[1] Univ Nacl Ctr, Pinto 399, RA-7000 Tandil, Argentina
[2] Univ Nacl La Pampa, Uruguay 151, RA-6300 Santa Rosa, Argentina
来源
基金
欧盟地平线“2020”;
关键词
Semilattices; distributivity on semilattices; duality theory; congruences;
D O I
10.33044/revuma.v59n2a04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a topological duality for the category of mildly distributive meet-semilattices with a top element and certain morphisms between them. Then, we use this duality to characterize topologically the lattices of Frink ideals and filters, and we also obtain a topological representation for some congruences on mildly distributive meet-semilattices.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 50 条
  • [1] Priestley Style Duality for Distributive Meet-semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    STUDIA LOGICA, 2011, 98 (1-2) : 83 - 122
  • [2] Priestley Style Duality for Distributive Meet-semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Studia Logica, 2011, 98 : 83 - 122
  • [3] Level rings arising from meet-distributive meet-semilattices
    Herzog, J
    Hibi, T
    NAGOYA MATHEMATICAL JOURNAL, 2006, 181 : 29 - 39
  • [4] Hyperdeterminants on meet-semilattices
    Wang, Bangyan
    Hong, Shaofang
    Li, Mao
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10): : 1899 - 1915
  • [5] Coloring of meet-semilattices
    Nimbhoxar, S. K.
    Wasadikar, M. P.
    Demeyer, Lisa
    ARS COMBINATORIA, 2007, 84 : 97 - 104
  • [6] A NOTE ON MEET-SEMILATTICES WITH PSEUDOCOMPLEMENTATIONS
    Mamedov, Oktay M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2007, 27 (35): : 45 - 46
  • [7] MILDLY DISTRIBUTIVE SEMILATTICES
    HICKMAN, R
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (JUN): : 287 - 315
  • [8] NOTES ON MILDLY DISTRIBUTIVE SEMILATTICES
    Arturo Celani, Sergio
    Javier Gonzalez, Luciano
    MATHEMATICA SLOVACA, 2017, 67 (05) : 1073 - 1084
  • [9] Quasi-concave functions on meet-semilattices
    Kempner, Yulia
    Muchnik, Ilya
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (04) : 492 - 499
  • [10] Injective Hulls in the Category of Mildly Distributive Semilattices
    Changchun Xia
    Order, 2022, 39 : 381 - 388