The limiting behavior of constrained minimizers in Orlicz-Sobolev spaces

被引:0
|
作者
Grey Ercole
Viviane M. Magalhães
Gilberto A. Pereira
机构
[1] Universidade Federal de Minas Gerais,Department of Mathematics
[2] Universidade Federal de Ouro Preto,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω ⊂ ℝN be a smooth, bounded domain. For each p > 1, let W01,Φp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_0^{1,{\Phi _p}}\left(\Omega \right)$$\end{document} be the Orlicz—Sobolev space generated by an N-function Φp and let up∈W01,Φp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_p} \in W_0^{1,{\Phi _p}}\left(\Omega \right)$$\end{document} be a nonnegative minimizer of the modular functional ∫ΩΦp(|∇u|)dx restricted to the sphere ∥u∥Lr(Ω) = 1, where r ≥ 1. Under certain hypotheses on the family (Φp), we prove that up converges uniformly to δ/∥δ∥Lr(Ω), where δ denotes the distance function to the boundary of Ω as p → ∞.
引用
收藏
页码:271 / 296
页数:25
相关论文
共 50 条
  • [31] On the local behavior of the Orlicz-Sobolev classes
    Sevost’yanov E.A.
    Skvortsov S.A.
    Journal of Mathematical Sciences, 2017, 224 (4) : 563 - 581
  • [32] Nonhomogeneous multiparameter problems in Orlicz-Sobolev spaces
    Radulescu, Vicentiu D.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2555 - 2574
  • [33] Γ-CONVERGENCE OF INHOMOGENEOUS FUNCTIONALS IN ORLICZ-SOBOLEV SPACES
    Bocea, Marian
    Mihailescu, Mihai
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) : 287 - 303
  • [34] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [35] IMBEDDING THEOREMS FOR WEIGHTED ORLICZ-SOBOLEV SPACES
    KRBEC, M
    OPIC, B
    PICK, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 : 543 - 556
  • [36] Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 401 - 406
  • [37] Optimal Domain Spaces in Orlicz-Sobolev Embeddings
    Cianchi, Andrea
    Musil, Vit
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (03) : 925 - 966
  • [38] Boundedness of functions in fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [39] Compactness results in inhomogeneous Orlicz-Sobolev spaces
    Elmahi, A
    PARTIAL DIFFERENTIAL EQUATIONS, PROCEEDINGS, 2002, 229 : 207 - 221
  • [40] Weighted composition operators on Orlicz-Sobolev spaces
    Arora, Subhash C.
    Datt, Gopal
    Verma, Satish
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 : 327 - 334