The limiting behavior of constrained minimizers in Orlicz-Sobolev spaces

被引:0
|
作者
Grey Ercole
Viviane M. Magalhães
Gilberto A. Pereira
机构
[1] Universidade Federal de Minas Gerais,Department of Mathematics
[2] Universidade Federal de Ouro Preto,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω ⊂ ℝN be a smooth, bounded domain. For each p > 1, let W01,Φp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_0^{1,{\Phi _p}}\left(\Omega \right)$$\end{document} be the Orlicz—Sobolev space generated by an N-function Φp and let up∈W01,Φp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_p} \in W_0^{1,{\Phi _p}}\left(\Omega \right)$$\end{document} be a nonnegative minimizer of the modular functional ∫ΩΦp(|∇u|)dx restricted to the sphere ∥u∥Lr(Ω) = 1, where r ≥ 1. Under certain hypotheses on the family (Φp), we prove that up converges uniformly to δ/∥δ∥Lr(Ω), where δ denotes the distance function to the boundary of Ω as p → ∞.
引用
收藏
页码:271 / 296
页数:25
相关论文
共 50 条
  • [21] Removable Sets for Orlicz-Sobolev Spaces
    Nijjwal Karak
    Potential Analysis, 2015, 43 : 675 - 694
  • [22] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [23] HARDY INEQUALITIES IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Salort, Ariel M.
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 183 - 195
  • [24] NEMITSKY OPERATORS BETWEEN ORLICZ-SOBOLEV SPACES
    HARDY, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (02) : 251 - 269
  • [25] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [26] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24
  • [27] Boundary behavior of Orlicz-Sobolev classes
    D. A. Kovtonyuk
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Mathematical Notes, 2014, 95 : 509 - 519
  • [28] Boundary behavior of Orlicz-Sobolev classes
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 509 - 519
  • [29] A sharp embedding theorem for Orlicz-Sobolev spaces
    Cianchi, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1996, 45 (01) : 39 - 65
  • [30] EMBEDDING THEOREMS ON THE FRACTIONAL ORLICZ-SOBOLEV SPACES
    Jung, Tacksun
    Choi, Q-Heung
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 56 - 63