The limiting behavior of constrained minimizers in Orlicz-Sobolev spaces

被引:0
|
作者
Grey Ercole
Viviane M. Magalhães
Gilberto A. Pereira
机构
[1] Universidade Federal de Minas Gerais,Department of Mathematics
[2] Universidade Federal de Ouro Preto,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω ⊂ ℝN be a smooth, bounded domain. For each p > 1, let W01,Φp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_0^{1,{\Phi _p}}\left(\Omega \right)$$\end{document} be the Orlicz—Sobolev space generated by an N-function Φp and let up∈W01,Φp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_p} \in W_0^{1,{\Phi _p}}\left(\Omega \right)$$\end{document} be a nonnegative minimizer of the modular functional ∫ΩΦp(|∇u|)dx restricted to the sphere ∥u∥Lr(Ω) = 1, where r ≥ 1. Under certain hypotheses on the family (Φp), we prove that up converges uniformly to δ/∥δ∥Lr(Ω), where δ denotes the distance function to the boundary of Ω as p → ∞.
引用
收藏
页码:271 / 296
页数:25
相关论文
共 50 条
  • [1] THE LIMITING BEHAVIOR OF CONSTRAINED MINIMIZERS IN ORLICZ-SOBOLEV SPACES
    Ercole, Grey
    Magalhaes, Viviane M.
    Pereira, Gilberto A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 147 (01): : 271 - 296
  • [2] THE LIMITING BEHAVIOR OF GLOBAL MINIMIZERS IN NON-REFLEXIVE ORLICZ-SOBOLEV SPACES
    Ercole, Grey
    Figueiredo, Giovany M.
    Magalhaes, Viviane M.
    Pereira, Gilberto A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (12) : 5267 - 5280
  • [3] THE LIMITING BEHAVIOR OF GLOBAL MINIMIZERS IN NON-REFLEXIVE ORLICZ-SOBOLEV SPACES
    Ercole, Grey
    Figueiredo, Giovany M.
    Magalhaes, Viviane M.
    Pereira, Gilberto O.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [4] The limiting Behavior of Solutions to Inhomogeneous Eigenvalue Problems in Orlicz-Sobolev Spaces
    Bocea, Marian
    Mihailescu, Mihai
    Stancu-Dumitru, Denisa
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 977 - 990
  • [5] A constrained shape optimization problem in Orlicz-Sobolev spaces
    Vitor da Silva, Joao
    Salort, Ariel M.
    Silva, Analia
    Spedaletti, Juan F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5493 - 5520
  • [6] ON A PROPERTY OF ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    LECTURE NOTES IN MATHEMATICS, 1984, 1107 : 102 - 105
  • [7] On fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [8] A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces
    Santos, Jefferson Abrantes
    Soares, Sergio H. Monari
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (06) : 1687 - 1720
  • [9] Variational Integrals on Orlicz-Sobolev Spaces
    Fuchs, M.
    Osmolovski, V.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (02): : 393 - 415
  • [10] Regularity of Minimizers in the Two-Phase Free Boundary Problems in Orlicz-Sobolev Spaces
    Zheng, Jun
    Feng, Binhua
    Zhao, Peihao
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (01): : 37 - 47