Porous medium equation and fast diffusion equation as gradient systems

被引:0
|
作者
Samuel Littig
Jürgen Voigt
机构
[1] TU Dresden,Fachrichtung Mathematik
来源
关键词
porous medium equation; gradient system; fast diffusion; asymptotic behaviour; order preservation; 35G25; 47J35; 47H99; 34G20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Porous Medium Equation and the Fast Diffusion Equation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot u - \Delta {u^m} = f$$\end{document}, with m ∈ (0, ∞), can be modeled as a gradient system in the Hilbert space H−1(Ω), and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets Ω ⊆ ℝn and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
引用
收藏
页码:869 / 889
页数:20
相关论文
共 50 条
  • [41] Conditional symmetry of a porous medium equation
    Physica D: Nonlinear Phenomena, 1998, 122 (1-4): : 178 - 186
  • [42] The Toda Flow as a Porous Medium Equation
    Khesin, Boris
    Modin, Klas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1879 - 1898
  • [43] REGULARITY OF THE INTERFACE FOR THE POROUS MEDIUM EQUATION
    Ko, Youngsang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [44] RANDOM WALKS AND THE POROUS MEDIUM EQUATION
    Cortazar, C.
    Elgueta, M.
    Martinez, S.
    Rossi, J. D.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 149 - 155
  • [45] Wasserstein geometry of porous medium equation
    Takatsu, Asuka
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02): : 217 - 232
  • [46] Potential symmetries of a porous medium equation
    Gandarias, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 5919 - 5934
  • [47] A microscopic mechanism for the porous medium equation
    Feng, S
    Iscoe, I
    Seppalainen, T
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 66 (02) : 147 - 182
  • [48] A Rado theorem for the porous medium equation
    Fedchenko, Dmitry
    Tarkhanov, Nikolai
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2018, 24 (02): : 427 - 437
  • [49] A General Fractional Porous Medium Equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (09) : 1242 - 1284
  • [50] Conditional symmetry of a porous medium equation
    Zhdanov, RZ
    Lahno, VI
    PHYSICA D, 1998, 122 (1-4): : 178 - 186