Porous medium equation and fast diffusion equation as gradient systems

被引:0
|
作者
Samuel Littig
Jürgen Voigt
机构
[1] TU Dresden,Fachrichtung Mathematik
来源
关键词
porous medium equation; gradient system; fast diffusion; asymptotic behaviour; order preservation; 35G25; 47J35; 47H99; 34G20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Porous Medium Equation and the Fast Diffusion Equation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot u - \Delta {u^m} = f$$\end{document}, with m ∈ (0, ∞), can be modeled as a gradient system in the Hilbert space H−1(Ω), and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets Ω ⊆ ℝn and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
引用
收藏
页码:869 / 889
页数:20
相关论文
共 50 条
  • [31] Large time behavior of solutions for the porous medium equation with a nonlinear gradient source
    Li, Nan
    Zheng, Pan
    Mu, Chunlai
    Ahmed, Iftikhar
    BOUNDARY VALUE PROBLEMS, 2014,
  • [32] Existence and uniqueness of very singular solutions for a fast diffusion equation with gradient absorption
    Iagar, Razvan Gabriel
    Laurencot, Philippe
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 509 - 529
  • [33] Some Gradient Estimates and Liouville Properties of the Fast Diffusion Equation on Riemannian Manifolds
    Wen Wang
    Rulong Xie
    Pan Zhang
    Chinese Annals of Mathematics, Series B, 2021, 42 : 529 - 550
  • [34] Some Gradient Estimates and Liouville Properties of the Fast Diffusion Equation on Riemannian Manifolds
    Wang, Wen
    Xie, Rulong
    Zhang, Pan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (04) : 529 - 550
  • [35] Some Gradient Estimates and Liouville Properties of the Fast Diffusion Equation on Riemannian Manifolds
    Wen WANG
    Rulong XIE
    Pan ZHANG
    ChineseAnnalsofMathematics,SeriesB, 2021, (04) : 529 - 550
  • [36] The porous medium equation with measure data
    Lukkari, Teemu
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 711 - 729
  • [37] Flux diffusion and the porous medium equation (vol 291, pg 132, 1997)
    Gilchrist, J
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1998, 295 (3-4): : 330 - 330
  • [38] Potential symmetries of a porous medium equation
    J Phys A Math Gen, 18 (5919):
  • [39] The Toda Flow as a Porous Medium Equation
    Boris Khesin
    Klas Modin
    Communications in Mathematical Physics, 2023, 401 : 1879 - 1898
  • [40] Boundary Regularity for the Porous Medium Equation
    Bjorn, Anders
    Bjorn, Jana
    Gianazzac, Ugo
    Siljander, Juhana
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (02) : 493 - 538