The Faddeev–Mickelsson–Shatashvili Anomaly and Lifting Bundle Gerbes

被引:0
|
作者
Pedram Hekmati
Michael K. Murray
Danny Stevenson
Raymond F. Vozzo
机构
[1] University of Adelaide,School of Mathematical Sciences
[2] University of Glasgow,School of Mathematics and Statistics
来源
关键词
Gauge Group; Line Bundle; Dirac Operator; Central Extension; Projective Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
In gauge theory, the Faddeev–Mickelsson–Shatashvili anomaly arises as a prolongation problem for the action of the gauge group on a bundle of projective Fock spaces. In this paper, we study this anomaly from the point of view of bundle gerbes and give several equivalent descriptions of the obstruction. These include lifting bundle gerbes with non-trivial structure group bundle and bundle gerbes related to the caloron correspondence.
引用
收藏
页码:379 / 393
页数:14
相关论文
共 50 条
  • [1] The Faddeev-Mickelsson-Shatashvili Anomaly and Lifting Bundle Gerbes
    Hekmati, Pedram
    Murray, Michael K.
    Stevenson, Danny
    Vozzo, Raymond F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (02) : 379 - 393
  • [2] Faddeev's anomaly and bundle gerbes
    Carey, AL
    Murray, MK
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (01) : 29 - 36
  • [3] Connections and curvings on lifting bundle gerbes
    Gomi, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 510 - 526
  • [4] MANY FINITE-DIMENSIONAL LIFTING BUNDLE GERBES ARE TORSION
    Roberts, David Michael
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (02) : 323 - 338
  • [5] Bundle Gerbes
    Murray, MK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 403 - 416
  • [7] Bundle gerbes and Brownian motion
    Léandre, R
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS V, PROCEEDINGS, 2004, : 342 - 352
  • [8] The Weyl map and bundle gerbes
    Becker, Kimberly E.
    Murray, Michael K.
    Stevenson, Daniel
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 149
  • [9] Bundle gerbes and moduli spaces
    Bouwknegt, Peter
    Mathai, Varghese
    Wu, Siye
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (01) : 1 - 10
  • [10] Equivariant bundle gerbes.
    Murray, Michael K.
    Roberts, David Michael
    Stevenson, Danny
    Vozzo, Raymond F.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (04) : 921 - 975