Sequential origin in the high performance properties of orb spider dragline silk

被引:0
|
作者
Todd A. Blackledge
José Pérez-Rigueiro
Gustavo R. Plaza
Belén Perea
Andrés Navarro
Gustavo V. Guinea
Manuel Elices
机构
[1] The University of Akron,Department of Biology and Integrated Bioscience Program
[2] Universidad Politécnica de Madrid,Centro de Tecnología Biomédica
[3] Universidad Politécnica de Madrid,Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers.
引用
下载
收藏
相关论文
共 50 条
  • [41] Morphology and microstructure of spider dragline silk from Araneus Ventricosus
    Pan, Z.-J. (zhjpan@suda.edu.cn), 2005, Editorial Board of Journal of Dong Hua University (22):
  • [42] Supercontraction forces in spider dragline silk depend on hydration rate
    Agnarsson, Ingi
    Boutry, Cecilia
    Wong, Shing-Chung
    Baji, Avinash
    Dhinojwala, Ali
    Sensenig, Andrew T.
    Blackledge, Todd A.
    ZOOLOGY, 2009, 112 (05) : 325 - 331
  • [43] Synthetic spider dragline silk proteins and their production in Escherichia coli
    S. R. Fahnestock
    S. L. Irwin
    Applied Microbiology and Biotechnology, 1997, 47 : 23 - 32
  • [44] Role of alanine sequences in forming β-sheets of spider dragline silk
    Spek, Erik J.
    Wu, Huai Chuan
    Kallenbach, Neville R.
    Journal of the American Chemical Society, 1997, 119 (21):
  • [45] Morphology and Composition of the Spider Major Ampullate Gland and Dragline Silk
    Andersson, Marlene
    Holm, Lena
    Ridderstrale, Yvonne
    Johansson, Jan
    Rising, Anna
    BIOMACROMOLECULES, 2013, 14 (08) : 2945 - 2952
  • [46] High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein
    Kuwana, Yoshihiko
    Sezutsu, Hideki
    Nakajima, Ken-ichi
    Tamada, Yasushi
    Kojima, Katsura
    PLOS ONE, 2014, 9 (08):
  • [47] The study of the elasticity of spider dragline silk with liquid crystal model
    Cui, Lin-ying
    Liu, Fei
    Ou-Yang, Zhong-can
    THIN SOLID FILMS, 2009, 518 (02) : 735 - 738
  • [48] Production of synthetic spider dragline silk protein in Pichia pastoris
    Fahnestock, SR
    Bedzyk, LA
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 47 (01) : 33 - 39
  • [49] The color of dragline silk produced in captivity by the spider Nephila clavipes
    Putthanarat, S
    Tapadia, P
    Zarkoob, S
    Miller, LD
    Eby, RK
    Adams, WW
    POLYMER, 2004, 45 (06) : 1933 - 1937
  • [50] Supercontraction in Nephila spider dragline silk - Relaxation into equilibrium state
    Ene, Roxana
    Papadopoulos, Periklis
    Kremer, Friedrich
    POLYMER, 2011, 52 (26) : 6056 - 6060