Sequential origin in the high performance properties of orb spider dragline silk

被引:0
|
作者
Todd A. Blackledge
José Pérez-Rigueiro
Gustavo R. Plaza
Belén Perea
Andrés Navarro
Gustavo V. Guinea
Manuel Elices
机构
[1] The University of Akron,Department of Biology and Integrated Bioscience Program
[2] Universidad Politécnica de Madrid,Centro de Tecnología Biomédica
[3] Universidad Politécnica de Madrid,Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers.
引用
收藏
相关论文
共 50 条
  • [31] Two Mechanisms for Supercontraction in Nephila Spider Dragline Silk
    Guan, Juan
    Vollrath, Fritz
    Porter, David
    BIOMACROMOLECULES, 2011, 12 (11) : 4030 - 4035
  • [32] Molecular architecture and engineering of spider dragline silk protein
    Zhang, HM
    Liu, JY
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2005, 15 (09) : 769 - 776
  • [33] Nanofibrillar structure and molecular mobility in spider dragline silk
    不详
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 623 - 623
  • [34] Molecular architecture and engineering of spider dragline silk protein
    ZHANG Hengmu and LIU Jinyuan(Department of Biological Sciences and Biotechnology
    Progress in Natural Science:Materials International, 2005, (09) : 769 - 776
  • [35] Self-Healable Spider Dragline Silk Materials
    Chen, Wen-Chia
    Wang, Ruei-Ci
    Yu, Sheng-Kai
    Chen, Jheng-Liang
    Kao, Yu-Han
    Wang, Tzi-Yuan
    Chang, Po-Ya
    Sheu, Hwo-Shuenn
    Chen, Ssu-Ching
    Liu, Wei-Ren
    Yang, Ta-, I
    Wu, Hsuan-Chen
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (44)
  • [36] Nanofibrillar structure and molecular mobility in spider dragline silk
    Sapede, D
    Seydel, T
    Forsyth, VT
    Koza, MA
    Schweins, R
    Vollrath, F
    Riekel, C
    MACROMOLECULES, 2005, 38 (20) : 8447 - 8453
  • [37] Strain dependent structural changes of spider dragline silk
    Glisovic, Anja
    Vehoff, Thorsten
    Davies, Richard J.
    Salditt, Tim
    MACROMOLECULES, 2008, 41 (02) : 390 - 398
  • [38] Peculiar torsion dynamical response of spider dragline silk
    Liu, Dabiao
    Yu, Longteng
    He, Yuming
    Peng, Kai
    Liu, Jie
    Guan, Juan
    Dunstan, D. J.
    APPLIED PHYSICS LETTERS, 2017, 111 (01)
  • [39] Molecular deformation in spider dragline silk subjected to stress
    Sirichaisit, J
    Young, RJ
    Vollrath, F
    POLYMER, 2000, 41 (03) : 1223 - 1227
  • [40] The effect of spinning conditions on the mechanics of a spider's dragline silk
    Vollrath, F
    Madsen, B
    Shao, ZZ
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 268 (1483) : 2339 - 2346