Generalizations of ⊕ -supplemented modules

被引:0
|
作者
B. N. Türkmen
A. Pancar
机构
[1] Ondokuz Mayıs University,
来源
关键词
Direct Summand; Commutative Ring; Torsion Module; Indecomposable Module; Dedekind Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce ⊕ -radical supplemented modules and strongly ⊕ -radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕ -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕ -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is an srs⊕-module; (3) over a local Dedekind domain, every ⊕ -radical supplemented module is an srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
引用
收藏
页码:612 / 622
页数:10
相关论文
共 50 条
  • [41] When Finitely Generated δ-Supplemented Modules Are Supplemented
    Tribak, Rachid
    ALGEBRA COLLOQUIUM, 2015, 22 (01) : 119 - 130
  • [42] FINITELY GENERATED δ-SUPPLEMENTED MODULES ARE AMPLY δ-SUPPLEMENTED
    Tribak, Rachid
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (03) : 430 - 439
  • [43] Direct Projective Modules, Direct Injective Modules, and their Generalizations
    Abyzov A.N.
    Tuganbaev A.A.
    Tapkin D.T.
    Cong Q.T.
    Journal of Mathematical Sciences, 2021, 258 (2) : 250 - 264
  • [44] Two generalizations of projective modules and their applications
    Wang, Fanggui
    Kim, Hwankoo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2099 - 2123
  • [45] On Generalizations of Projective QTAG-Modules
    Sikander, Fahad
    Begam, Firdhousi
    Fatima, Tanveer
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [46] On closed weak supplemented modules
    曾庆怡
    史美华
    Journal of Zhejiang University Science A(Science in Engineering), 2006, (02) : 210 - 215
  • [47] Rad-supplemented Modules
    Buyukasik, Engin
    Mermut, Engin
    Ozdemir, Salahattin
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 157 - 177
  • [48] GOLDIE-SUPPLEMENTED MODULES
    Birkenmeier, G. F.
    Mutlu, F. Takil
    Nebiyev, C.
    Sokmez, N.
    Tercan, A.
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52A : 41 - 52
  • [49] Direct summands of ⊕-supplemented modules
    Orhan, Nil
    Tuetuencue, Derya Keskin
    Tribak, Rachid
    ALGEBRA COLLOQUIUM, 2007, 14 (04) : 625 - 630
  • [50] F-supplemented modules
    Ozdemir, S.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 30 (01): : 83 - 96