Direct Summand;
Commutative Ring;
Torsion Module;
Indecomposable Module;
Dedekind Domain;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce ⊕ -radical supplemented modules and strongly ⊕ -radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕ -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕ -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is an srs⊕-module; (3) over a local Dedekind domain, every ⊕ -radical supplemented module is an srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
机构:
Kazan (Volga Region) Federal University, KazanKazan (Volga Region) Federal University, Kazan
Abyzov A.N.
Tuganbaev A.A.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow Power Engineering Institute (National Research University), Moscow
M. V. Lomonosov Moscow State University, MoscowKazan (Volga Region) Federal University, Kazan
Tuganbaev A.A.
Tapkin D.T.
论文数: 0引用数: 0
h-index: 0
机构:
Kazan (Volga Region) Federal University, KazanKazan (Volga Region) Federal University, Kazan
Tapkin D.T.
Cong Q.T.
论文数: 0引用数: 0
h-index: 0
机构:
The University of Danang, DanangKazan (Volga Region) Federal University, Kazan
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Sichuan, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Sichuan, Peoples R China
Wang, Fanggui
Kim, Hwankoo
论文数: 0引用数: 0
h-index: 0
机构:
Hoseo Univ, Sch Comp & Informat Engn, Asan 336795, South KoreaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Sichuan, Peoples R China