OCTONIONIC HERMITIAN MATRICES WITH NON-REAL EIGENVALUES

被引:0
|
作者
Tevian Dray
Jason Janesky
Corinne A. Manogue
机构
[1] Oregon State University,Department of Mathematics
[2] Oregon State University,Department of Physics
[3] Motorola Inc.,Phoenix Corporate Research Laboratories
关键词
Real Eigenvalue; Hermitian Matrice; Left Eigenvector; Normed Division Algebra; Left Eigenvalue;
D O I
10.1007/s00006-000-0003-1
中图分类号
学科分类号
摘要
We extend previous work on the eigenvalue problem for Hermitian octonionic matrices by discussing the case where the eigenvalues are not real, giving a complete treatment of the 2  ×  2 case, and summarizing some preliminary results for the 3  ×  3 case.
引用
收藏
页码:193 / 216
页数:23
相关论文
共 50 条
  • [1] Perturbing non-real eigenvalues of nonnegative real matrices
    Laffey, TJ
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2004, 12 : 73 - 76
  • [2] Perturbing non-real eigenvalues of non-negative real matrices
    Guo, Siwen
    Guo, Wuwen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (01) : 199 - 203
  • [3] Non-Real Eigenvalues for -Symmetric Double Wells
    Benbernou, Amina
    Boussekkine, Naima
    Mecherout, Nawal
    Ramond, Thierry
    Sjostrand, Johannes
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (12) : 1817 - 1835
  • [4] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53
  • [5] Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
    Fu Sun
    Kun Li
    Jiangang Qi
    Baochao Liao
    Boundary Value Problems, 2019
  • [6] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [7] Non-real eigenvalues of indefinite Sturm-Liouville problems
    Xie, Bing
    Qi, Jiangang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2291 - 2301
  • [8] Non-Hermitian potentials and real eigenvalues
    Hook, Daniel W.
    ANNALEN DER PHYSIK, 2012, 524 (6-7) : 106 - 107
  • [9] Real eigenvalues of non-hermitian operators
    Surjan, Peter R.
    Szabados, Agnes
    Gombas, Andras
    MOLECULAR PHYSICS, 2024, 122 (15-16)
  • [10] Non-Hermitian β-ensemble with real eigenvalues
    Bohigas, O.
    Pato, M. P.
    AIP ADVANCES, 2013, 3 (03):