Perturbing non-real eigenvalues of non-negative real matrices

被引:9
|
作者
Guo, Siwen
Guo, Wuwen
机构
[1] Eban Commerce Inc, Toronto, ON L4J 2M7, Canada
[2] Guangzhou Univ, Inst Educ Software, Guangzhou 510006, Peoples R China
关键词
nonnegative matrix; spectrum; eigenvalue; inverse problem; perron root; perturbation;
D O I
10.1016/j.laa.2007.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (sigma = (rho, b + ic, b - ic, lambda(4),....,lambda(n)) be the spectrum of an entry non-negative matrix and t >= 0. Laffey [T.J. Laffey, Perturbing non-real eigenvalues of nonnegative real matrices, Electron. J. Linear Algebra 12 (2005) 73-76] has shown that (7 = (rho + 2t, b - t + ic, b - t - ic, lambda(4),...,lambda(n)) is also the spectrum of some non-negative matrix. Laffey (2005) has used a rank one perturbation for small t and then used a compactness argument to extend the result to all non-negative t. In this paper, a rank two perturbation is used to deduce an explicit and constructive proof for all t >= 0. Crown copyright (C) 2007 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 50 条
  • [1] Perturbing non-real eigenvalues of nonnegative real matrices
    Laffey, TJ
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2004, 12 : 73 - 76
  • [2] OCTONIONIC HERMITIAN MATRICES WITH NON-REAL EIGENVALUES
    Tevian Dray
    Jason Janesky
    Corinne A. Manogue
    Advances in Applied Clifford Algebras, 2000, 10 (2) : 193 - 216
  • [3] EIGENVALUES OF NON-NEGATIVE MATRICES
    PRUITT, WE
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04): : 1797 - &
  • [4] Non-Real Eigenvalues for -Symmetric Double Wells
    Benbernou, Amina
    Boussekkine, Naima
    Mecherout, Nawal
    Ramond, Thierry
    Sjostrand, Johannes
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (12) : 1817 - 1835
  • [5] The Square Root of Nonsingular Matrices with Non-negative Eigenvalues
    Chaiworn, Areerak
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (04): : 731 - 735
  • [6] Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
    Fu Sun
    Kun Li
    Jiangang Qi
    Baochao Liao
    Boundary Value Problems, 2019
  • [7] Non-real eigenvalues of indefinite Sturm-Liouville problems
    Xie, Bing
    Qi, Jiangang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2291 - 2301
  • [8] The real and the non-real in speech measurements
    Howard, DM
    MEDICAL ENGINEERING & PHYSICS, 2002, 24 (7-8) : 493 - 500
  • [9] Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm-Liouville problem
    Kikonko, Mervis
    Mingarelli, Angelo B.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6221 - 6232
  • [10] ON NON-NEGATIVE FORMS IN REAL VARIABLES SOME OR ALL OF WHICH ARE NON-NEGATIVE
    DIANANDA, PH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 17 - &