Perturbing non-real eigenvalues of non-negative real matrices

被引:9
|
作者
Guo, Siwen
Guo, Wuwen
机构
[1] Eban Commerce Inc, Toronto, ON L4J 2M7, Canada
[2] Guangzhou Univ, Inst Educ Software, Guangzhou 510006, Peoples R China
关键词
nonnegative matrix; spectrum; eigenvalue; inverse problem; perron root; perturbation;
D O I
10.1016/j.laa.2007.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (sigma = (rho, b + ic, b - ic, lambda(4),....,lambda(n)) be the spectrum of an entry non-negative matrix and t >= 0. Laffey [T.J. Laffey, Perturbing non-real eigenvalues of nonnegative real matrices, Electron. J. Linear Algebra 12 (2005) 73-76] has shown that (7 = (rho + 2t, b - t + ic, b - t - ic, lambda(4),...,lambda(n)) is also the spectrum of some non-negative matrix. Laffey (2005) has used a rank one perturbation for small t and then used a compactness argument to extend the result to all non-negative t. In this paper, a rank two perturbation is used to deduce an explicit and constructive proof for all t >= 0. Crown copyright (C) 2007 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 50 条