Partially Broken Orientations of Eulerian Plane Graphs

被引:0
|
作者
Gen Kawatani
Yusuke Suzuki
机构
[1] Tokyo University of Science,Department of Mathematical Information Science
[2] Niigata University,Department of Mathematics
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Plane graph; Eulerian graph; Orientation;
D O I
暂无
中图分类号
学科分类号
摘要
It is well-known that every Eulerian plane graph G is face 2-colorable and admits an orientation which is an assignment of a direction to each edge of G such that incoming edges and outgoing edges appear alternately around any v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V(G)$$\end{document}; we say that such a vertex v has the alternate property, and that such an orientation is good. In this paper, we discuss orientations given to Eulerian plane graphs such that some specified vertices do not have the alternate property (while the others have the property), and give a characterization in terms of the radial graph of the Eulerian plane graph. Furthermore, for a given properly drawn graph on the plane, we discuss whether it has a good orientation or not.
引用
收藏
页码:767 / 777
页数:10
相关论文
共 50 条
  • [31] ON EULERIAN IRREGULARITY IN GRAPHS
    Andrews, Eric
    Lumduanhom, Chira
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) : 391 - 408
  • [32] GRAPHS WITH EULERIAN CHAINS
    EGGLETON, RB
    SKILTON, DK
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 29 (03) : 389 - 399
  • [33] EULERIAN POLAR GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1976, 26 (03) : 361 - 364
  • [34] Eulerian Glued Graphs
    Boonthong, V.
    Putthapiban, P.
    Chaisuriya, P.
    Pacheenburawana, P.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (01): : 103 - 109
  • [35] ON MINIMAL EULERIAN GRAPHS
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    INFORMATION PROCESSING LETTERS, 1981, 12 (04) : 203 - 205
  • [36] SWITCHES IN EULERIAN GRAPHS
    Zehmakan, A. N.
    Nummenpalo, J.
    Pilz, A.
    Wolleb-Graf, D.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1087 - 1092
  • [37] Cumulant expansion for counting Eulerian orientations
    Isaev, Mikhail
    Mckay, Brendan D.
    Zhang, Rui-Ray
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 172 : 263 - 314
  • [38] Editing to Eulerian graphs
    Dabrowski, Konrad K.
    Golovach, Petr A.
    van 't Hof, Pim
    Paulusma, Daniel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (02) : 213 - 228
  • [39] Covers of eulerian graphs
    Fan, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (02) : 173 - 187
  • [40] The generating function of planar Eulerian orientations
    Bousquet-Melou, Mireille
    Price, Andrew Elvey
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 172